From MFKP_wiki

Jump to: navigation, search

Selection: Lindenmayer:DB [4 articles] 

Publications by author Lindenmayer:DB.

Newly discovered landscape traps produce regime shifts in wet forests

Proceedings of the National Academy of Sciences, Vol. 108, No. 38. (20 September 2011), pp. 15887-15891,


We describe the “landscape trap” concept, whereby entire landscapes are shifted into, and then maintained (trapped) in, a highly compromised structural and functional state as the result of multiple temporal and spatial feedbacks between human and natural disturbance regimes. The landscape trap concept builds on ideas like stable alternative states and other relevant concepts, but it substantively expands the conceptual thinking in a number of unique ways. In this paper, we (i) review the literature to develop the concept of landscape ...


Effects of logging on fire regimes in moist forests

Conservation Letters, Vol. 2, No. 6. (December 2009), pp. 271-277,


Does logging affect the fire proneness of forests? This question often arises after major wildfires, but data suggest that answers differ substantially among different types of forest. Logging can alter key attributes of forests by changing microclimates, stand structure and species composition, fuel characteristics, the prevalence of ignition points, and patterns of landscape cover. These changes may make some kinds of forests more prone to increased probability of ignition and increased fire severity. Such forests include tropical rainforests where fire was ...


The unique challenges of conserving large old trees

Trends in Ecology & Evolution (April 2016),


Large old trees play numerous critical ecological roles. They are susceptible to a plethora of interacting threats, in part because the attributes that confer a competitive advantage in intact ecosystems make them maladapted to rapidly changing, human-modified environments. Conserving large old trees will require surmounting a number of unresolved challenges. ...


Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

Proceedings of the National Academy of Sciences, Vol. 106, No. 28. (14 July 2009), pp. 11635-11640,


From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n ...

This page of the database may be cited as:
Integrated Natural Resources Modelling and Management - Meta-information Database.

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.