From MFKP_wiki

Jump to: navigation, search

Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover

Stephen V. Stehman, Cidália C. Fonte, Giles M. Foody, Linda See

Use of VGI in design-based inference requires adhering to rigorous protocols.
Collecting VGI using a probability sample is best option for design-based inference.
Certainty stratum approach incorporates VGI to reduce standard errors.
Incorporating VGI in a model-assisted estimator is beneficial in limited situations.
VGI from non-probability sample requires difficult to verify assumptions.

Abstract. Volunteered Geographic Information (VGI) offers a potentially inexpensive source of reference data for estimating area and assessing map accuracy in the context of remote-sensing based land-cover monitoring. The quality of observations from VGI and the typical lack of an underlying probability sampling design raise concerns regarding use of VGI in widely-applied design-based statistical inference. This article focuses on the fundamental issue of sampling design used to acquire VGI. Design-based inference requires the sample data to be obtained via a probability sampling design. Options for incorporating VGI within design-based inference include: 1) directing volunteers to obtain data for locations selected by a probability sampling design; 2) treating VGI data as a “certainty stratum” and augmenting the VGI with data obtained from a probability sample; and 3) using VGI to create an auxiliary variable that is then used in a model-assisted estimator to reduce the standard error of an estimate produced from a probability sample. The latter two options can be implemented using VGI data that were obtained from a non-probability sampling design, but require additional sample data to be acquired via a probability sampling design. If the only data available are VGI obtained from a non-probability sample, properties of design-based inference that are ensured by probability sampling must be replaced by assumptions that may be difficult to verify. For example, pseudo-estimation weights can be constructed that mimic weights used in stratified sampling estimators. However, accuracy and area estimates produced using these pseudo-weights still require the VGI data to be representative of the full population, a property known as “external validity”. Because design-based inference requires a probability sampling design, directing volunteers to locations specified by a probability sampling design is the most straightforward option for use of VGI in design-based inference. Combining VGI from a non-probability sample with data from a probability sample using the certainty stratum approach or the model-assisted approach are viable alternatives that meet the conditions required for design-based inference and use the VGI data to advantage to reduce standard errors.

Remote Sensing of Environment, Vol. 212 (June 2018), pp. 47-59, 
Key: INRMM:14621714



Article-Level Metrics (Altmetrics)
Digital Object Identifier

Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:5741608422435568140

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:5741608422435568140

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.