From MFKP_wiki

Jump to: navigation, search


Resilience of networks with community structure behaves as if under an external field

Gaogao Dong, Jingfang Fan, Louis M. Shekhtman, Saray Shai, Ruijin Du, Lixin Tian, Xiaosong Chen, H. Eugene Stanley, Shlomo Havlin



Significance. Much work has focused on phase transitions in complex networks in which the system transitions from a resilient to a failed state. Furthermore, many of these networks have a community structure, whose effects on resilience have not yet been fully understood. Here, we show that the community structure can significantly affect the resilience of the system in that it removes the phase transition present in a single module, and the network remains resilient at this transition. In particular, we show that the effect of increasing interconnections is analogous to increasing external magnetic field in spin systems. Our findings provide insight into the resilience of many modular complex systems and clarify the important effects that community structure has on network resilience.

Abstract. Although detecting and characterizing community structure is key in the study of networked systems, we still do not understand how community structure affects systemic resilience and stability. We use percolation theory to develop a framework for studying the resilience of networks with a community structure. We find both analytically and numerically that interlinks (the connections among communities) affect the percolation phase transition in a way similar to an external field in a ferromagnetic– paramagnetic spin system. We also study universality class by defining the analogous critical exponents δ and γ, and we find that their values in various models and in real-world coauthor networks follow the fundamental scaling relations found in physical phase transitions. The methodology and results presented here facilitate the study of network resilience and also provide a way to understand phase transitions under external fields.


Proceedings of the National Academy of Sciences, Vol. 115, No. 27. (03 July 2018), pp. 6911-6915, https://doi.org/10.1073/pnas.1801588115 
Key: INRMM:14613249

Keywords

                 

Article-Level Metrics (Altmetrics)
Digital Object Identifier


Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:3291147059861098155

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:3291147059861098155

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.