From MFKP_wiki

Jump to: navigation, search

Enhancing the WorldClim data set for national and regional applications

Laura Poggio, Enrico Simonetti, Alessandro Gimona

Regional adaptation of climate surfaces and future scenarios at fine resolution
Computationally efficient enhancement of WorldClim resources
Use of enhanced climatic data to estimate erosivity and species range shift
Use of climate data adapted to the geographical extent of the analysis

Abstract. Climatic change in the last few decades has had a widespread impact on both natural and human systems, observable on all continents. Ecological and environmental models using climatic data often rely on gridded data, such as WorldClim. The main aim of this study was to devise and evaluate a computationally efficient approach to produce new high resolution (100 m) estimates of current and future climatic variables to be used at the national and regional scale. The test area was Great Britain, where local data are available and of good quality. Present and future climate surfaces were produced. For the present, the approach involved the integration, via spatial interpolation, of local climate information and WorldClim to reduce bias. For future climate scenarios the approach involved spatially downscaling of WorldClim (1 km) to a finer resolution of 100 m.
The main advantages of the proposed approach are: 1. finer resolution, 2. locally adapted to the study area with use of higher number of meteorological stations and improved accuracy and bias, and 3. computationally efficient while making use of the existing resources provided by WorldClim.
Two applications were presented to illustrate the practical consequences of improvements obtained with this method. The first is a measure of rainfall intensity, i.e. the R-factor, widely applied in erosion and catchment-scale studies. The second is an application to species distribution modelling, involving a range of bioclimatic variables. The results highlighted the importance of considering the spatial variability and structure of the data integrated in the modelling, and using data adapted to the geographical extent of the analysis, whenever possible.
The results of the applications showed the advantage of using enhanced climatic data in applications such as the estimation of soil erosion, species range shift, carbon stocks and the provision of ecosystem services.

Science of The Total Environment, Vol. 625 (June 2018), pp. 1628-1643, 
Key: INRMM:14608158



Article-Level Metrics (Altmetrics)
Digital Object Identifier

Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:16707477739134938615

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:16707477739134938615

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.