From MFKP_wiki

Jump to: navigation, search

Predicting conifer establishment post wildfire in mixed conifer forests of the North American Mediterranean-climate zone

Kevin R. Welch, Hugh D. Safford, Truman P. Young

Due to fire suppression policies, timber harvest, and other management practices over the last century, many low‐ to mid‐elevation forests in semiarid parts of the western United States have accumulated high fuel loads and dense, multi‐layered canopies that are dominated by shade‐tolerant and fire‐sensitive conifers. To a great extent, the future status of western US forests will depend on tree species’ responses to patterns and trends in fire activity and fire behavior and postfire management decisions. This is especially the case in the North American Mediterranean‐climate zone (NAMCZ), which supports the highest precipitation variability in North America and a 4‐ to 6‐month annual drought, and has seen greater‐than‐average increases in air temperature and fire activity over the last three decades. We established 1490 survey plots in 14 burned areas on 10 National Forests across a range of elevations, forest types, and fire severities in the central and northern NAMCZ to provide insight into factors that promote natural tree regeneration after wildfires and the differences in postfire responses of the most common conifer species. We measured site characteristics, seedling densities, woody shrub, and tree growth. We specified a zero‐inflated negative binomial mixed model with random effects to understand the importance of each measured variable in predicting conifer regeneration. Across all fires, 43% of all plots had no conifer regeneration. Ten of the 14 fires had median conifer seedling densities that did not meet Forest Service stocking density thresholds for mixed conifer forests. When regeneration did occur, it was dominated by shade‐tolerant but fire‐sensitive firs (Abies spp.), Douglas‐fir (Pseudotsuga menziesii) and incense cedar (Calocedrus decurrens). Seedling densities of conifer species were lowest in sites that burned at high severity, principally due to the biotic consequences of high severity fire, for example, increased distances to live seed trees and competition with fire‐following shrubs. We developed a second model specifically for forest managers and restoration practitioners who work in yellow pine and mixed conifer forests in the central NAMCZ to assess potential natural regeneration in the years immediately following a fire, allowing them to prioritize which areas may need active postfire forest restoration and supplemental planting.

Ecosphere, Vol. 7, No. 12. (December 2016), e01609, 
Key: INRMM:14589238



Article-Level Metrics (Altmetrics)
Digital Object Identifier

Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:13826441863694645814

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:13826441863694645814

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.