From MFKP_wiki

Jump to: navigation, search


Has artificial intelligence become alchemy?

Matthew Hutson

Ali Rahimi, a researcher in artificial intelligence (AI) at Google in San Francisco, California, has charged that machine learning algorithms, in which computers learn through trial and error, have become a form of "alchemy." Researchers, he says, do not know why some algorithms work and others don't, nor do they have rigorous criteria for choosing one AI architecture over another. Now, in a paper presented on 30 April at the International Conference on Learning Representations in Vancouver, Canada, Rahimi and his collaborators document examples of what they see as the alchemy problem and offer prescriptions for bolstering AI's rigor. The issue is distinct from AI's reproducibility problem, in which researchers can't replicate each other's results because of inconsistent experimental and publication practices. It also differs from the "black box" or "interpretability" problem in machine learning: the difficulty of explaining how a particular AI has come to its conclusions.


Science, Vol. 360, No. 6388. (04 May 2018), pp. 478-478, https://doi.org/10.1126/science.360.6388.478 
Key: INRMM:14580706

Keywords

                                   

Article-Level Metrics (Altmetrics)
Digital Object Identifier


Available versions (may include free-access full text)

DOI, HighWire, HighWire (PDF), Pubmed, Hubmed, Pubget

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.