From MFKP_wiki

Jump to: navigation, search


Mapping the interaction between development aid and stunting in Nigeria

Claudio Bosco, Natalia Tejedor-Garavito, Daniele de Rigo, Carla Pezzulo, Linus Bengtsson, Andrew J. Tatem, Tomas J. Bird

For meeting sustainable development goals (SDGs) an improved understanding of geographic differences in health status, wealth and access to resources is crucial. The equitable and effcient allocation of international aid relies on knowing where funds are needed most. For instance, aid for poverty alleviation or financial access improvement requires knowledge of where the poor are. Unfortunately, detailed, reliable and timely information on the spatial distribution and characteristics of intended aid recipients in many low income countries are rarely available. This lack of information also hinders assessments of the impacts of aid; when presented at national scales, development and health indicators conceal important inequities, with the rural poor often least well represented. High-resolution data on key social and health indicators are therefore fundamental for targeting limited resources, especially where development funding has recently come under increased pressure.
In this study, we show how modern statistical approaches can be used to maps for the distribution of indicators with a level of detail that can support geographically stratified decision-making. Using predictive modelling techniques, the rates of stunting in children under the age of five from Demographic and Health Surveys (DHS) geolocated cluster data were exploited to predict high-resolution maps (2008-2013) in Nigeria. An array of different modelling techniques was applied to produce prediction maps. These included Bayesian geostatistical models and machine learning techniques. An ensemble model was also exploited for aggregating the different modelling results.
By combining these maps with information on the disbursement of aid for stunting alleviation in Nigeria (AidData database - http://aiddata.org/ ), we quantified both the distribution of aid relative to population characteristics related to stunting, and how aid disbursement interacts with changes in this index. In spite of the lack of exhaustive information related to aid disbursement, the results here demonstrate the potential of this approach.


In 28th IUSSP International Population Conference (2017) 
Key: INRMM:14573315

Keywords

                           



Available versions (may include free-access full text)

https://iussp.confex.com/iussp/ipc2017/me…, https://iussp.confex.com/iussp/ipc2017/me…

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core

Digital preservation of this INRMM-MiD record

Internet Archive

References

  1. AidData, 2016. Nigeria AIMS geocoded research release, version 1.3.1. In: AidData Datasets. AidData, Williamsburg, VA and Washington, DC. http://aiddata.org/data/nigeria-aims-geocoded-research-release-level-1-v1-3-1 , http://aiddata.org/research-datasets ,   INRMM-MiD: 14546755
  2. Alegana, V. A., Atkinson, P. M., Pezzulo, C., Sorichetta, A., Weiss, D., Bird, T., Erbach-Schoenberg, E., Tatem, A. J., 2015. Fine resolution mapping of population age-structures for health and development applications. Journal of The Royal Society Interface 12 (105), 20150073+. https://doi.org/10.1098/rsif.2015.0073 ,   INRMM-MiD: 14546782
  3. Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P., 2015. Modelling soil erosion at European scale: towards harmonization and reproducibility. Natural Hazards and Earth System Science 15 (2), 225-245. https://doi.org/10.5194/nhess-15-225-2015 ,   INRMM-MiD: 13508255
  4. Bosco, C., Sander, G. 2015. Estimating the effects of water-induced shallow landslides on soil erosion. IEEE Earthzine 7, 910137+. http://earthzine.org/?p=910137, https://doi.org/10.1101/011965 ,   INRMM-MiD: 13455081
  5. Bosco, C., Alegana, V. A., Bird, T., Pezzulo, C., Bengtsson, L., Sorichetta, A., Steele, J., Hornby, G., Ruktanonchai, C. W., Ruktanonchai, N. W., Wetter, E., Tatem, A. J., 2017. Exploring the high-resolution mapping of gender-disaggregated development indicators. Journal of The Royal Society Interface 14 (129), 20160825+. https://doi.org/10.1098/rsif.2016.0825 ,   INRMM-MiD: 14332252
  6. Bosco, C., Alegana, V., Bird, T., Pezzulo, C., Hornby, G., Sorichetta, A., Steele, J., Ruktanonchai, C., Ruktanonchai, N., Wetter, E., Bengtsson, L., Tatem, A. J., 2017. Mapping indicators of female welfare at high spatial resolution. Tech. rep., WorldPop project, Flowminder Foundation, Stockholm, Sweden. http://data2x.org/wp-content/uploads/2017/02/Mapping-Indicators-of-Female-Welfareat-High-Spatial-Resolution.pdf ,   INRMM-MiD: 14335578
  7. Breiman, L., 2001. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Statistical Science 16 (3), 199-231. https://doi.org/10.1214/ss/1009213726 ,   INRMM-MiD: 7796484
  8. Castejon Limas, M., Ordieres Mere, J. B., Gonzalez Marcos, A., de Pison Ascacibar, F. J., Pernia Espinoza, A. V., Alba Elias, F., Perez Ramos, J. M., 2014. AMORE: A MORE flexible neural network package. In: The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/AMORE/index.html ,   INRMM-MiD: 14565897
  9. Caudullo, G., 2014. Applying Geospatial Semantic Array Programming for a reproducible set of bioclimatic indices in Europe. IEEE Earthzine 7 (2), 877975+. http://www.earthzine.org/?p=877975 https://doi.org/10.1101/009589 ,   INRMM-MiD: 13385094
  10. de Onis, M., Onyango, A., Borghi, E., Siyam, A., Pinol, A., Garza, C., Martines, J., Martorell, R., Victora, C. G., Bhan, M. K., Araújo, C. L., Lartey, A., Owusu, W. B., Bhandari, N., Norum, K. R., Bjoerneboe, G.-E. A., Mohamed, A. J., Dewey, K. G., Belbase, K., Black, M., Chumlea, W., Cole, T., Frongillo, E., Grummer-Strawn, L., Shrimpton, R., Van den Broeck, J., Pan, H., Rigby, R., Stasinopoulos, M., van Buuren, S., Albernaz, E., Tomasi, E., de Cássia Fossati da Silveira, R., Nader, G., Sagoe-Moses, I., Gomez, V., Sagoe-Moses, C., Taneja, S., Rongsen, T., Chetia, J., Sharma, P., Bahl, R., Baerug, A., Tufte, E., Rudvin, K., Nysaether, H., Alasfoor, D., Prakash, N. S., Mabry, R. M., Al Rajab, H. J., Helmi, S. A., Nommsen-Rivers, L. A., Cohen, R. J., Heinig, M. J., 2006. WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age - Methods and development. World Health Organization, Geneva, Switzerland, 312 pp. http://www.who.int/childgrowth/standards/technical report/en/ ,   INRMM-MiD: 14547506
  11. de Rigo, D., Castelletti, A., Rizzoli, A. E., Soncini-Sessa, R., Weber, E., 2005. A selective improvement technique for fastening neuro-dynamic programming in water resources network management. In: Proceedings of the 16th IFAC World Congress (IFAC Praha 2005). http://folk.ntnu.no/skoge/prost/proceedings/ifac2005/Papers/Paper4269.html (archived at http://www.webcitation.org/5zuFRunw5) ,   INRMM-MiD: 10793225
  12. de Rigo, D., 2012. Semantic Array Programming for environmental modelling: application of the Mastrave library. In: Seppelt, R., Voinov, A. A., Lange, S., Bankamp, D. (Eds.), International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software - Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty, Sixth Biennial Meeting. pp. 1167-1176. https://scholarsarchive.byu.edu/iemssconference/2012/Stream-B/69/ ,   INRMM-MiD: 12227965
  13. de Rigo, D., 2012b. Semantic Array Programming with Mastrave - Introduction to semantic computational modelling. The Mastrave project. http://mastrave.org/doc/MTV-1.012-1/ ,   INRMM-MiD: 11744308
  14. de Rigo, D., 2013. Software uncertainty in integrated environmental modelling: the role of semantics and open science. Geophysical Research Abstracts 15, 13292+. https://doi.org/10.6084/m9.figshare.155701 ,   INRMM-MiD: 12794802
  15. de Rigo, D., Corti, P., Caudullo, G., McInerney, D., Di Leo, M., San-Miguel-Ayanz, J., 2013. Toward open science at the European scale: Geospatial Semantic Array Programming for integrated environmental modelling. Geophysical Research Abstracts 15, 13245+. https://doi.org/10.6084/m9.figshare.155703, RePEc:pra:mprapa:44194 ,   INRMM-MiD: 11977126
  16. de Rigo, D., 2015. Study of a collaborative repository of semantic metadata and models for regional environmental datasets' multivariate transformations. Ph.D. thesis, Politecnico di Milano, Milano, Italy. http://hdl.handle.net/10589/101044 ,   INRMM-MiD: 13769492
  17. Eaton, J. W., Bateman, D., Hauberg, S., 2008. GNU Octave manual version 3: a high-level interactive language for numerical computations. Network Theory. http://www.network-theory.co.uk/docs/octave3/ ,   INRMM-MiD: 9115371
  18. Eaton, J. W., 2012. GNU octave and reproducible research. Journal of Process Control 22 (8), 1433-1438. https://doi.org/10.1016/j.jprocont.2012.04.006 ,   INRMM-MiD: 10799158
  19. Free Software Foundation, Abernathy, W., Anderson, G., Anhalt, C., Bai, L., Baptista, V., Barakat, M., Batini, E., Bavier, E., Becher, J., Becher, V., Biberg Kristensen, L., Boyle, T., Brown, P., Catkan, B., Charzat, S., Cherlin, E., Compall, S., Davies, P., de Rigo, D., Devarajan, D., Dorrington, M., Fernández Piñas, D., Fortin, P., Gauland, M., Gillmor, D. K., Goh, T., Golin, R., Haichao, X., Hall, D., Hyde, A., Innoccenti, B., Jonsson, A., Kibbe, D., Kochenderfer, V., Krampis, N., Lee, M., Lockwood-Childs, S., Lucifredi, F., Magallon, M., Martin, A., McConnaughey, W., McNeely, M., Mengel, M., Merriam, W., Nair, S., Newell, M., Oliver, J., Oram, A., Oranen, J., Pawson, D., Prastowo, T., Ravikumar, S., Revilak, S., Schaumburg, S., Skwarecki, B., Sullivan, J., Tange, O., Tenney, K., Thahir, S., Walck, S., Weissmann, B., Wells, S., Williams, C., Woodacre, B., Woof, J., et al., 2010. Introduction to the Command Line. FLOSS Manuals. http://write.flossmanuals.net/command-line ,   INRMM-MiD: 13644772
  20. Gelman A., Hill J., 2006. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. ISBN:9780521686891 ,   INRMM-MiD: 9983048
  21. Gething, P., Tatem, A., Bird, T., Burgert-Brucker, C. R., 2015. Creating spatial interpolation surfaces with DHS data. No. 11 in DHS Spatial Analysis Reports. ICF International, Rockville, Maryland, USA. https://dhsprogram.com/publications/publication-SAR11-Spatial-Analysis-Reports.cfm ,   INRMM-MiD: 14547328
  22. Golding, N., Burstein, R., Longbottom, J., Browne, A. J., Fullman, N., Osgood-Zimmerman, A., Earl, L., Bhatt, S., Cameron, E., Casey, D. C., Dwyer-Lindgren, L., Farag, T. H., Flaxman, A. D., Fraser, M. S., Gething, P. W., Gibson, H. S., Graetz, N., Krause, L. K., Kulikoff, X. R., Lim, S. S., Mappin, B., Morozoff, C., Reiner, R. C., Sligar, A., Smith, D. L., Wang, H., Weiss, D. J., Murray, C. J. L., Moyes, C. L., Hay, S. I., 2017. Mapping under-5 and neonatal mortality in Africa, 2000{15: a baseline analysis for the Sustainable Development Goals. The Lancet 390 (10108), 2171-2182. https://doi.org/10.1016/S0140-6736(17)31758-0 ,   INRMM-MiD: 14546798
  23. Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2 (5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8 ,   INRMM-MiD: 1700245
  24. Kinyoki, D. K., Kandala, N.-B., Manda, S. O., Krainski, E. T., Fuglstad, G.-A., Moloney, G. M., Berkley, J. A., Noor, A. M., 2016. Assessing comorbidity and correlates of wasting and stunting among children in Somalia using cross-sectional household surveys: 2007 to 2010. BMJ Open 6 (3), e009854+. https://doi.org/10.1136/bmjopen-2015-009854 ,   INRMM-MiD: 14546857
  25. Kreinovich, V. Y., 1991. Arbitrary nonlinearity is sucient to represent all functions by neural networks: a theorem. Neural Networks 4 (3), 381-383. https://doi.org/10.1016/0893-6080(91)90074-f ,   INRMM-MiD: 10833268
  26. Mubareka, S., Jonsson, R., Rinaldi, F., Fiorese, G., San-Miguel-Ayanz, J., Sallnas, O., Baranzelli, C., Pilli, R., Lavalle, C., Kitous, A., 2014. An integrated modelling framework for the forest-based bioeconomy. IEEE Earthzine 7 (2), 908802+. http://earthzine.org/?p=908802 https://doi.org/10.1101/011932 ,   INRMM-MiD: 13494913
  27. Murray-Rust, P., 2008. Open data in science. Serials Review 34 (1), 52-64. https://doi.org/10.1016/j.serrev.2008.01.001 ,   INRMM-MiD: 3753449
  28. National Population Commission (NPC) [Nigeria], ICF Macro, 2009. Nigeria demographic and health survey 2008. National Population Commission and ICF Macro, Abuja, Nigeria. https://dhsprogram.com/publications/publication-fr222-dhs-final-reports.cfm ,   INRMM-MiD: 14547611
  29. National Population Commission (NPC) [Nigeria], ICF Macro, 2014. Nigeria demographic and health survey 2013. National Population Commission and ICF Macro, Abuja, Nigeria. https://dhsprogram.com/publications/publication-fr293-dhs-final-reports.cfm ,   INRMM-MiD: 14547615
  30. Rue, H., Martino, S., and Chopin, N., 2009. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B , 71(2):319-392.
  31. Sedda, L., Tatem, A. J., Morley, D. W., Atkinson, P. M., Wardrop, N. A., Pezzulo, C., Sorichetta, A., Kuleszo, J., Rogers, D. J., 2015. Poverty, health and satellite-derived vegetation indices: their inter-spatial relationship in West Africa. International Health 7 (2), 99-106. https://doi.org/10.1093/inthealth/ihv005 ,   INRMM-MiD: 14546815
  32. Stallman, R. M., 2005. Free community science and the free development of science. PLoS Med 2 (2), e47+. https://doi.org/10.1371/journal.pmed.0020047 ,   INRMM-MiD: 11232893
  33. Stallman, R. M., 2009. Viewpoint: why "open source" misses the point of free software. Communications of the ACM 52 (6), 31-33. https://doi.org/10.1145/1516046.1516058 ,   INRMM-MiD: 9506694
  34. Venables, W.N., Smith, D.M., R Core Team, 2018. An Introduction to R - Notes on R: a programming environment for data analysis and graphics, version 3.4.4 Edition. R Core Team, 105 pp. https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf ,   INRMM-MiD: 14557691
  35. Wolpert, D. H., 1992. Stacked generalization. Neural Networks 5 (2), 241-259. https://doi.org/10.1016/s0893-6080(05)80023-1 ,   INRMM-MiD: 3157859
  36. Zaslavsky, A. M., 2002. Hierarchical Bayesian modeling. In: Press, S. J. (Ed.), Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, Second Edition. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 336-358. https://doi.org/10.1002/9780470317105.ch14 ,   INRMM-MiD: 14546817


Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.