From MFKP_wiki

Jump to: navigation, search

Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics

Yoan Fourcade, Aurélien G. Besnard, Jean Secondi

Aim. Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species' ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism.

Innovation. First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo-predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo-predictors were classified as good and sometimes were even better evaluated than models computed using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability.

Main conclusions. These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species' ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution.

Global Ecology and Biogeography, Vol. 27, No. 2. (February 2018), pp. 245-256, 
Key: INRMM:14546314



Article-Level Metrics (Altmetrics)
Digital Object Identifier

Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:16135735102669582427

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:16135735102669582427

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.