From MFKP_wiki

Jump to: navigation, search

Range dynamics of mountain plants decrease with elevation

Sabine B. Rumpf, Karl Hülber, Günther Klonner, Dietmar Moser, Martin Schütz, Johannes Wessely, Wolfgang Willner, Niklaus E. Zimmermann, Stefan Dullinger

Significance. Shifts of upper range limits are a key response of mountain biota to climate change. However, assessing whether species profit or suffer from the changing climate requires the simultaneous evaluation of changes in species’ lower and upper range limits, optima, and abundances. Here, we provide an integrated assessment for 183 plant species of the European Alps. We demonstrate that, over recent decades, increases in abundance were more pronounced than range shifts, suggesting an in-filling process which decreases in intensity with increasing elevation. While most species profited from recent range dynamics, a sizeable minority both decreased in abundance and experienced range contractions. These “losers” are overrepresented among species of highest elevations which represent a unique contribution to the European flora.

Abstract. Many studies report that mountain plant species are shifting upward in elevation. However, the majority of these reports focus on shifts of upper limits. Here, we expand the focus and simultaneously analyze changes of both range limits, optima, and abundances of 183 mountain plant species. We therefore resurveyed 1,576 vegetation plots first recorded before 1970 in the European Alps. We found that both range limits and optima shifted upward in elevation, but the most pronounced trend was a mean increase in species abundance. Despite huge species-specific variation, range dynamics showed a consistent trend along the elevational gradient: Both range limits and optima shifted upslope faster the lower they were situated historically, and species’ abundance increased more for species from lower elevations. Traits affecting the species’ dispersal and persistence capacity were not related to their range dynamics. Using indicator values to stratify species by their thermal and nutrient demands revealed that elevational ranges of thermophilic species tended to expand, while those of cold-adapted species tended to contract. Abundance increases were strongest for nutriphilous species. These results suggest that recent climate warming interacted with airborne nitrogen deposition in driving the observed dynamics. So far, the majority of species appear as “winners” of recent changes, yet “losers” are overrepresented among high-elevation, cold-adapted species with low nutrient demands. In the decades to come, high-alpine species may hence face the double pressure of climatic changes and novel, superior competitors that move up faster than they themselves can escape to even higher elevations.

Proceedings of the National Academy of Sciences, Vol. 115, No. 8. (20 February 2018), pp. 1848-1853, 
Key: INRMM:14538781



Article-Level Metrics (Altmetrics)
Digital Object Identifier

Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:5733939309579426063

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:5733939309579426063

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.