From MFKP_wiki

Jump to: navigation, search


A global map of travel time to cities to assess inequalities in accessibility in 2015

D. J. Weiss, A. Nelson, H. S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T. C. D. Lucas, R. E. Howes, L. S. Tusting, S. Y. Kang, E. Cameron, D. Bisanzio, K. E. Battle, S. Bhatt, P. W. Gething

The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of ‘leaving no one behind’ established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.


Nature, Vol. 553, No. 7688. (10 January 2018), pp. 333-336, https://doi.org/10.1038/nature25181 
Key: INRMM:14519219

Keywords

               


Article-Level Metrics (Altmetrics)
Digital Object Identifier


Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:16254890534336031123

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:16254890534336031123

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Additional information

In this section further information is provided concerning online material which refers to the publication.
"[...] In the present study, we quantify and validate global accessibility to high-density urban centres at a resolution of 1×1 kilometre for 2015, as measured by travel time. [...] A major strength of the new roads data is its inclusion of minor roads (e.g., unpaved rural roads), which comprise a large proportion of roads in many low-resource settings and were largely absent or geographically inaccurate in previous roads databases. [...]". Source: https://map.ox.ac.uk/research-project/accessibility_to_cities/
Further readings: https://map.ox.ac.uk/research-project/accessibility_to_cities/
Archived at: https://web.archive.org/web/20180118103823/https://map.ox.ac.uk/research-project/accessibility_to_cities/
The following information is from: https://map.ox.ac.uk/research-project/accessibility_to_cities/#data-visualisation


Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.