From MFKP_wiki

Jump to: navigation, search

Generalized 3D fragmentation index derived from lidar point clouds

Vaclav Petras, Douglas J. Newcomb, Helena Mitasova

Background. Point clouds with increased point densities create new opportunities for analyzing landscape structure in 3D space. Taking advantage of these dense point clouds we have extended a 2D forest fragmentation index developed for regional scale analyses into a 3D index for analyzing vegetation structure at a much finer scale.

Methods. Based on the presence or absence of points in a 3D raster (voxel model) the 3D fragmentation index is used to evaluate the configuration of a cell’s 3D neighborhood resulting in fragmentation classes such as interior, edge, or patch. In order to incorporate 3D fragmentation into subsequent conventional 2D analyses, we developed a transformation of this 3D fragmentation index into a series of 2D rasters based on index classes.

Results. We applied this method to a point cloud obtained by airborne lidar capturing a suburban area with mixed forest cover. All processing and visualization was done in GRASS GIS, an open source, geospatial processing and remote sensing tool. The newly developed code is also publicly available and open source. The entire processing chain is available and executable through Docker for maximum reproducibility.

Conclusions. We demonstrated that this proposed index can be used to describe different types of vegetation structure making it a promising tool for remote sensing and landscape ecology. Finally, we suggest that processing point clouds using 3D raster methods including 3D raster algebra is as straightforward as using well-established 2D raster and image processing methods.

Open Geospatial Data, Software and Standards, Vol. 2, No. 1. (20 April 2017), 
Key: INRMM:14517158



Article-Level Metrics (Altmetrics)
Digital Object Identifier

Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:10437661460701709538

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:10437661460701709538

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.