From MFKP_wiki

Jump to: navigation, search


Environmental and geographic variables are effective surrogates for genetic variation in conservation planning

Jeffrey O. Hanson, Jonathan R. Rhodes, Cynthia Riginos, Richard A. Fuller



Significance. To protect biodiversity for the long term, nature reserves and other protected areas need to represent a broad range of different genetic types. However, genetic data are expensive and time-consuming to obtain. Here we show that freely available environmental and geographic variables can be used as effective surrogates for genetic data in conservation planning. This means that conservation planners can, with some confidence, design protected area systems to represent intraspecific genetic diversity without investing in expensive programs to obtain and analyze genetic data.

Abstract. Protected areas buffer species from anthropogenic threats and provide places for the processes that generate and maintain biodiversity to continue. However, genetic variation, the raw material for evolution, is difficult to capture in conservation planning, not least because genetic data require considerable resources to obtain and analyze. Here we show that freely available environmental and geographic distance variables can be highly effective surrogates in conservation planning for representing adaptive and neutral intraspecific genetic variation. We obtained occurrence and genetic data from the IntraBioDiv project for 27 plant species collected over the European Alps using a gridded sampling scheme. For each species, we identified loci that were potentially under selection using outlier loci methods, and mapped their main gradients of adaptive and neutral genetic variation across the grid cells. We then used the cells as planning units to prioritize protected area acquisitions. First, we verified that the spatial patterns of environmental and geographic variation were correlated, respectively, with adaptive and neutral genetic variation. Second, we showed that these surrogates can predict the proportion of genetic variation secured in randomly generated solutions. Finally, we discovered that solutions based only on surrogate information secured substantial amounts of adaptive and neutral genetic variation. Our work paves the way for widespread integration of surrogates for genetic variation into conservation planning.


Proceedings of the National Academy of Sciences, Vol. 114, No. 48. (28 November 2017), pp. 12755-12760, https://doi.org/10.1073/pnas.1711009114 
Key: INRMM:14485749

Keywords

               

Article-Level Metrics (Altmetrics)
Digital Object Identifier


Available versions (may include free-access full text)

DOI, HighWire, HighWire (PDF), Pubmed, Hubmed, Pubget

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:12711654289845237063

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:12711654289845237063

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.