From MFKP_wiki

Jump to: navigation, search


Effects of phosphite in Pinus radiata - Fusarium circinatum interaction

Andreia F. Cerqueira

edited by: Pinto Glória Catarina Cintra da Costa, Artur Alves

The pitch canker, caused by the fungus Fusarium circinatum, is a disease under quarantine measures affecting Pinus spp. and Pseudotsuga menziesii worldwide. Characterized by the formation of large resinous cankers that girdle shoots, branches, and trunks, leads to the death of the host. To date, there are no means for the control of the pitch canker and, with the growing need to reduce the use of fungicides, another approaches must be studied. A method for the control of phytopathogenic diseases is the enhancement of host resistance, through pre-treatment of seedlings with chemicals or biologically derived compounds that stimulate defense responses. Phosphite (Phi) is an inorganic salt with the capability of inducing host resistance and presents an approach more environmentally friendly. In this study, the ability of potassium phosphite (KPhi) in delaying the pitch canker symptom development, as well as its effects in fungal growth, were studied at different concentrations. In a first phase, F. circinatum colonies were grown in PDA medium supplemented with Phi (0%, 1% and 4%) to evaluation in the radial growth of the fungus. Posteriorly, were studied the effects of foliar application of Phi (0%, 1% and 4%) in Pinus radiata seedlings, inoculated and non-inoculated. Survival and physiological performance (water potential, gas exchange and photochemical performance, pigments, lipid peroxidation, electrolyte leakage, proline and carbohydrates) were assessed. Results showed that Phi application delayed disease symptoms in a dose dependent manner similarly to what was observed in mycelial growth inhibition during in vitro assays. Physiological alterations in proline, carbohydrates, lipid peroxidation and gas exchange parameters were observed. Thus, Phi application presents a potential viable alternative to the management of the pitch canker disease.


(2016) 
Key: INRMM:14466450

Keywords

             



Available versions (may include free-access full text)

http://hdl.handle.net/10773/17015

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core

Digital preservation of this INRMM-MiD record

Internet Archive

References

  1. Aguín, O., Mansilla, J. P., Sainz, M. J., 2006. In vitro selection of an effective fungicide against Armillaria mellea and control of white root rot of grapevine in the field. Pest Management Science 62(3), 223-228.   https://doi.org/10.1002/ps.1149 .
  2. Ahmad, P., John, R., Sarwat, M., Umar, S., 2008. Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. International Journal of Plant Production 2(4), 353-366.
  3. Bajji, M., Kinet, J. M., Lutts, S., 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation 36(1), 61-70.   https://doi.org/10.1023/A:1014732714549 .
  4. Bates, L. S., Waldren, R. P., Teare, I. D., 1973. Rapid determination of free proline for waterstress studies. Plant and Soil 39(1), 205-207.   https://doi.org/10.1007/BF00018060 .
  5. Berbegal, M., Pérez-Sierra, A., Armengol, J., Grünwald, N. J., 2013. Evidence for multiple introductions and clonality in Spanish populations of Fusarium circinatum. Phytopathology 103(8), 851-861.   https://doi.org/10.1094/PHYTO-11-12-0281-R .
  6. Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., Roitsch, T., 2004. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum 122(4), 419-428.   https://doi.org/10.1111/j.1399-3054.2004.00433.x .
  7. Berger, S., Sinha, A. K., Roitsch, T., 2007. Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany 58(15-16), 4019-4026.   https://doi.org/10.1093/jxb/erm298 .
  8. Bock, C. H., Brenneman, T. B., Hotchkiss, M. W., Wood, B. W., 2012. Evaluation of a phosphite fungicide to control pecan scab in the southeastern USA. Crop Protection 36, 58-64.   https://doi.org/10.1016/j.cropro.2012.01.009 .
  9. Bolton, M.D., 2009. Primary metabolism and plant defense - fuel for the fire. Molecular PlantMicrobe Interactions: MPMI 22(5), pp.487–497.   https://doi.org/10.1094/MPMI-22-5-0487 .
  10. Bonfig, K. B., Schreiber, U., Gabler, A., Roitsch, T., Berger, S., 2006. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225(1), 1-12.   https://doi.org/10.1007/s00425-006-0303-3 .
  11. Bragança, H., Diogo, E., Moniz, F., Amaro, P., 2009. First report of pitch canker on pines caused by Fusarium circinatum in Portugal. Plant Disease 93(10), 1079-1079.   https://doi.org/10.1094/PDIS-93-10-1079A .
  12. Britz, H., Couhnho, T. A., Gordon, T. R., Wingfield, M. J., 2001. Characterisation of the pitch canker fungus, Fusarium circinatum, from Mexico. South African Journal of Botany 67(4), 609-614.
  13. Burra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjö, S., Levander, F., Liljeroth, E., Andreasson, E., Alexandersson, E., 2014. Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC plant biology 14(1), 1.
  14. Carlucci, A., Colatruglio, L., Frisullo, S., 2007. First report of pitch canker caused by Fusarium circinatum on Pinus halepensis and P. pinea in Apulia (Southern Italy). Plant Disease 91(12), 1683-1683.
  15. Chow, P. S., Landhäusser, S. M., 2004. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiology 24(10), 1129-1136.
  16. Cinelli, T., Mondello, V., Marchi, G., Burruano, S., Alves, A., Mugnai, L., 2015. First Report of Diaporthe eres Associated with Cane Blight of Grapevine (Vitis vinifera) in Italy. Plant Disease, PDIS-08.
  17. Cook, P. J., Landschoot, P. J., Schlossberg, M. J., 2009. Inhibition of Pythium spp. and suppression of Pythium Blight of turfgrasses with phosphonate fungicides. Plant Disease 93(8), 809-814.
  18. Dalio, R. J., Fleischmann, F., Humez, M., Osswald, W., 2014. Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. PloS one 9(1), e87860.
  19. Daniel, R., Guest, D., 2006. Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiological and Molecular Plant Pathology 67(3), 194-201.   https://doi.org/10.1016/j.pmpp.2006.01.003 .
  20. de Rigo, D., Bosco, C., San-Miguel-Ayanz, J., Houston Durrant, T., Barredo, J. I., Strona, G., Caudullo, G., Di Leo, M., Boca, R., 2016. Forest resources in Europe: an integrated perspective on ecosystem services, disturbances and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg, pp. e015b50+ , https://w3id.org/mtv/FISE-Comm/v01/e015b50 .
  21. Doehlemann, G., Wahl, R., Horst, R. J., Voll, L. M., Usadel, B., Poree, F., Stitt, M., Pons-Kühnemann, J., Sonnewald, U., Kahmann, R., Kämper, J., 2008. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. The Plant Journal 56(2), 181-195.
  22. Donoso, A., Rodriguez, V., Carrasco, A., Ahumada, R., Sanfuentes, E., Valenzuela, S., 2015. Relative expression of seven candidate genes for pathogen resistance on Pinus radiata infected with Fusarium circinatum. Physiological and Molecular Plant Pathology 92, 42-50.
  23. Escandón, M., Cañal, M. J., Pascual, J., Pinto, G., Correia, B., Amaral, J., Meijón, M., 2016. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiology 36(1), 63-77.   https://doi.org/10.1093/treephys/tpv127 .
  24. European and Mediterranean Plant Protection Organization. 2015. EPPO A1 and A2 List of Pests Recommended for Regulation as Quarentine Pests. Available at http://archives.eppo.int/EPPOStandards/PM1_GENERAL/pm1-02(24)_A1A2_2015.pdf.
  25. Fagard, M., Launay, A., Clément, G., Courtial, J., Dellagi, A., Farjad, M., Masclaux-Daubresse, C., 2014. Nitrogen metabolism meets phytopathology. Journal of Experimental Botany 65(19), 5643-5656.
  26. Filippou, P., Bouchagier, P., Skotti, E., Fotopoulos, V., 2014. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany 97, 1-10.   https://doi.org/10.1016/j.envexpbot.2013.09.010 .
  27. Fitza, K. N., Payn, K. G., Steenkamp, E. T., Myburg, A. A., Naidoo, S., 2013. Chitosan application improves resistance to Fusarium circinatum in Pinus patula. South African Journal of Botany 85, 70-78.
  28. Ganley, R. J., Watt, M. S., Manning, L., Iturritxa, E., 2009. A global climatic risk assessment of pitch canker disease. Canadian Journal of Forest Research 39(11), 2246-2256.
  29. Gao, T., Zhou, H., Zhou, W., Hu, L., Chen, J., Shi, Z., 2016. The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis. Molecules 21(6), 770.
  30. Gentile, S., Valentino, D., Tamietti, G., 2009. Control of ink disease by trunk injection of potassium phosphite. Journal of Plant Pathology 565-571.
  31. Gomes, F. P., Oliva, M. A., Mielke, M. S., Almeida, A. A. F., Aquino, L. A., 2010. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Scientia Horticulturae 126(3), 379-384.   https://doi.org/10.1016/j.scienta.2010.07.036 .
  32. Gordon, T. R., Storer, A. J., Wood, D. L., 2001. The pitch canker epidemic in California. Plant Disease 85(11), 1128-1139.
  33. Gordon, T. R., Swett, C. L., Wingfield, M. J., 2015. Management of Fusarium diseases affecting conifers. Crop Protection 73, 28-39.
  34. Gozzo, F., Faoro, F., 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. Journal of Agricultural and Food Chemistry 61(51), 12473-12491.
  35. Guest, D., Grant, B., 1991. The complex action of phosphonates as antifungal agents. Biological Reviews 66(2), 159-187.
  36. Hardy, G. S. J., Barrett, S., Shearer, B. L., 2001. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology 30(2), 133-139.
  37. Hatier, J. H. B., Gould, K. S., 2008. Foliar anthocyanins as modulators of stress signals. Journal of Theoretical Biology 253(3), 625-627.
  38. Heath, R. L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1), 189-198.
  39. Hepting, G. H., Roth, E. R., 1946. Pitch canker, a new disease of some southern pines. Journal of Forestry 44(10), 742-744.
  40. Ioannou, E., Koutsaviti, A., Tzakou, O., Roussis, V., 2014. The genus Pinus: a comparative study on the needle essential oil composition of 46 pine species. Phytochemistry Reviews 13(4), 741-768.
  41. Irigoyen, J. J., Einerich, D. W., Sánchez-Díaz, M., 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia Plantarum 84(1), 55-60.
  42. Iturritxa, E., Ganley, R. J., Raposo, R., García‐Serna, I., Mesanza, N., Kirkpatrick, S. C., Gordon, T. R., 2013. Resistance levels of Spanish conifers against Fusarium circinatum and Diplodia pinea. Forest Pathology 43(6), 488-495.
  43. Iturritxa, E., Ganley, R. J., Wright, J., Heppe, E., Steenkamp, E. T., Gordon, T. R., Wingfield, M. J., 2011. A genetically homogenous popu lation of Fusarium circinatum causes pitch canker of Pinus radiata in the Basque Country, Spain. Fungal Biology 115(3), 288-295.
  44. Iturritxa, E., Mesanza, N., Brenning, A., 2015. Spatial analysis of the risk of major forest diseases in Monterey pine plantations. Plant Pathology 64(4), 880-889.
  45. Kaushal, N., Gupta, K., Bhandhari, K., Kumar, S., Thakur, P., Nayyar, H., 2011. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiology and Molecular Biology of Plants 17(3), 203-213.
  46. King, M., Reeve, W., Van der Hoek, M. B., Williams, N., McComb, J., O’Brien, P. A., Hardy, G. E. S. J., 2010. Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Molecular Genetics and Genomics 284(6), 425-435.
  47. Landeras, E., García, P., Fernández, Y., Braña, M., Fernández-Alonso, O., Méndez-Lodos, S., Beltrán, R., 2005. Outbreak of pitch canker caused by Fusarium circinatum on Pinus spp. in northern Spain. Plant Disease 89(9), 1015-1015.
  48. Liu, P., Li, B., Lin, M., Chen, G., Ding, X., Weng, Q., Chen, Q., 2016. Phosphite-induced reactive oxygen species production and ethylene and ABA biosynthesis, mediate the control of Phytophthora capsici in pepper (Capsicum annuum). Functional Plant Biology 43(6), 563-574.
  49. Lobato, M. C., Olivieri, F. P., Altamiranda, E. G., Wolski, E. A., Daleo, G. R., Caldiz, D. O., Andreu, A. B., 2008. Phosphite compounds reduce disease severity in potato seed tubers and foliage. European Journal of Plant Pathology 122(3), 349-358.
  50. Lobato, M. C., Olivieri, F. P., Daleo, G. R., Andreu, A. B., 2010. Antimicrobial activity of phosphites against different potato pathogens. Journal of Plant Diseases and Protection 117(3), 102-109.
  51. Lu, S., Li, L., 2008. Carotenoid metabolism: biosynthesis, regulation, and beyond. Journal of Integrative Plant Biology 50(7), 778-785.
  52. Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., Andreu, A. B., 2012. Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology 169(14), 1417-1424.
  53. Man, D., Bao, Y. X., Han, L. B., Zhang, X., 2011. Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. HortScience 46(7), 1027-1032.
  54. Martínez-Álvarez, P., Fernández-González, R. A., Sanz-Ros, A. V., Pando, V., Diez, J. J., 2016. Two fungal endophytes reduce the severity of pitch canker disease in Pinus radiata seedlings. Biological Control 94, 1-10.
  55. Martín‐Rodrigues, N., Espinel, S., Sanchez‐Zabala, J., Ortíz, A., González‐Murua, C., Duñabeitia, M. K., 2013. Spatial and temporal dynamics of the colonization of Pinus radiata by Fusarium circinatum, of conidiophora development in the pith and of traumatic resin duct formation. New Phytologist 198(4), 1215-1227.
  56. Martín‐Rodrigues, N., Sanchez‐Zabala, J., Salcedo, I., Majada, J., González‐Murua, C., Duñabeitia, M. K., 2015. New insights into radiata pine seedling root infection by Fusarium circinatum. Plant Pathology 64(6), 1336-1348.
  57. Mead, D.J., 2013. Sustainable management of Pinus radiata plantations. FAO Forestry Paper No. 170. Rome, FAO.
  58. Mitchell, R. G., Wingfield, M. J., Hodge, G. R., Steenkamp, E. T., Coutinho, T. A., 2013. The tolerance of Pinus patula× Pinus tecunumanii, and other pine hybrids, to Fusarium circinatum in greenhouse trials. New Forests 44(3), 443-456.
  59. Mitchell, R. G., Wingfield, M. J., Steenkamp, E. T., Roux, J., Verryn, S., Coutinho, T. A., 2014. Comparison of the tolerance of Pinus patula seedlings and established trees to infection by Fusarium circinatum. Southern Forests: a Journal of Forest Science 76(3), 151-159.
  60. Muramoto, M., Dwinell, L. D., 1990. Pitch canker of Pinus luchuensis in Japan. Plant Disease 74(7).
  61. Muñoz-Adalia, E. J., Flores-Pacheco, J. A., Martínez-Álvarez, P., Martín-García, J., Fernández, M., Diez, J. J., 2016. Effect of mycoviruses on the virulence of Fusarium circinatum and laccase activity. Physiological and Molecular Plant Pathology 94, 8-15.
  62. O’Brien, J. A., Daudi, A., Butt, V. S., Bolwell, G. P., 2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236(3), 765-779.
  63. Percival, G. C., Banks, J. M., 2014. Evaluation of plant defence activators for the potential control of Pseudomonas syringae pv. aesculi. Arboricultural Journal: The International Journal of Urban Forestry 36(2), 76-88.
  64. Percival, G. C., Banks, J. M., 2015. Phosphite-induced suppression of Pseudomonas bleeding canker (Pseudomonas syringae pv. aesculi) of horse chestnut (Aesculus hippocastanum L.). Arboricultural Journal: The International Journal of Urban Forestry 37(1), 7-20.
  65. Pereira, V. F., Resende, M. L. V. D., Ribeiro Júnior, P. M., Regina, M. D. A., Mota, R. V. D., Vitorino, L. R. R., 2012. Potassium phosphite on the control of downy mildew of grapevine and physicochemical characteristics of Merlot grapes. Pesquisa Agropecuária Brasileira 47(11), 1581-1588.
  66. Pfenning, L. H., Costa, S. D. S., Melo, M. P. D., Costa, H., Ventura, J. A., Auer, C. G., Santos, Á. F. D., 2014. First report and characterization of Fusarium circinatum, the causal agent of pitch canker in Brazil. Tropical Plant Pathology 39(3), 210-216.
  67. Pilbeam, R. A., Colquhoun, I. J., Shearer, B., Hardy, G. S. J., 2000. Phosphite concentration: its effect on phytotoxicity symptoms and colonisation by Phytophthora cinnamomi in three understorey species of Eucalyptus marginata forest. Australasian Plant Pathology 29(2), 86-95.
  68. Pividori, M., Giannetti, F., Barbati, A., Chirici, G., 2016. European Forest Types: tree species matrix. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), Species. Publication Office of the European Union, Luxembourg, pp. e01f162+. https://w3id.org/mtv/FISE-Comm/v01/e01e1b6 .
  69. Prokopová, J., Špundová, M., Sedlářová, M., Husičková, A., Novotný, R., Doležal, K., ..., Lebeda, A., 2010. Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiology and Biochemistry 48(8), 716-723.
  70. Pérez-Sierra, A., Landeras, E., León, M., Berbegal, M., García-Jiménez, J., Armengol, J., 2007. Characterization of Fusarium circinatum from Pinus spp. in northern Spain. Mycological Research 111(7), 832-839.
  71. Reddy, A. R., Chaitanya, K. V., Vivekanandan, M., 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161(11), 1189-1202.   https://doi.org/10.1016/j.jplph.2004.01.013 .
  72. Richardson, D. M., and P. W. Rundel., 2000. Ecology and biogeography of Pinus: an introduction. pp. 3–46 in D. M. Richardson, ed. Ecology and biogeography of Pinus. Cambridge Univ. Press, Cambridge, U.K.
  73. Rolny, N., Costa, L., Carrión, C., Guiamet, J. J., 2011. Is the electrolyte leakage assay an unequivocal test of membrane deterioration during leaf senescence?. Plant Physiology and Biochemistry 49(10), 1220-1227.
  74. San-Miguel-Ayanz, J., Torres, G. D., Gasparini, P., Ståhl, G., Parviainen, J., Lier, M., Asensio, I. A., Cienciala, E., Freudenschuss, A., Ferrera, P. G., Korhonen, K., Lanz, A., Nabuurs, G., Parviainen, J., Verkek, H., Weiss, G., 2015. Maintenance and appropriate enhancement of forest resources and their contribution to global carbon cycles. In: FOREST EUROPE, 2015: State of Europ's Forests 2015.
  75. Sanchez-Zabala, J., Majada, J., Martín-Rodrigues, N., Gonzalez-Murua, C., Ortega, U., Alonso-Graña, M., Duñabeitia, M. K., 2013. Physiological aspects underlying the improved outplanting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23(8), 627-640.   https://doi.org/10.1007/s00572-013-0500-4 .
  76. Santana, Q. C., Coetzee, M. P. A., Wingfield, B. D., Wingfield, M. J., Steenkamp, E. T., 2015. Nursery-linked plantation outbreaks and evidence for multiple introductions of the pitch canker pathogen Fusarium circinatum into South Africa. Plant Pathology 65, 357–368.
  77. Scharte, J., Schön, H., Weis, E., 2005. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant, Cell, Environment 28(11), 1421-1435.
  78. Scott, P. M., Dell, B., Shearer, B. L., Barber, P. A., Hardy, G. S. J., 2013. Phosphite and nutrient applications as explorative tools to identify possible factors associated with Eucalyptus gomphocephala decline in South-Western Australia. Australasian Plant Pathology 42(6), 701-711.
  79. Silva, O. C., Santos, H. A. A., Dalla Pria, M., May-De Mio, L. L., 2011. Potassium phosphite for control of downy mildew of soybean. Crop Protection 30(6), 598-604.
  80. Sims, D. A., Gamon, J. A., 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81(2), 337-354.   https://doi.org/10.1016/S0034-4257(02)00010-X .
  81. Swarbrick, P. J., Schulze-Lefert, P., Scholes, J. D., 2006. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell, Environment 29(6), 1061-1076.
  82. Thao, H. T. B., Yamakawa, T., 2009. Phosphite (phosphorous acid): fungicide, fertilizer or biostimulator? Soil Science and Plant Nutrition 55(2), 228-234.   https://doi.org/10.1111/j.1747-0765.2009.00365.x .
  83. Vallad, G. E., Goodman, R. M., 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop science 44(6), 1920-1934.   https://doi.org/10.2135/cropsci2004.1920 .
  84. Viljoen, A., Wingfield, M. J., Marasas, W. F. O., 1994. First report of Fusarium subglutinans f. sp. pini on pine seedlings in South Africa. Plant Disease 78(3), 309-312.
  85. Vivas, M., Martín, J. A., Gil, L., Solla, A., 2012. Evaluating methyl jasmonate for induction of resistance to Fusarium oxysporum, F. circinatum and Ophiostoma novo-ulmi. Forest Systems 21(2), 289-299.
  86. Walters, D. R., Ratsep, J., Havis, N. D., 2013. Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany 64(5), 1263-1280.
  87. Wingfield, M. J., Hammerbacher, A., Ganley, R. J., Steenkamp, E. T., Gordon, T. R., Wingfield, B. D., Coutinho, T. A., 2008. Pitch canker caused by Fusarium circinatum - A growing threat to pine plantations and forests worldwide. Australasian Plant Pathology 37(4), 319-334.   https://doi.org/10.1071/AP08036 .
  88. Wingfield, M. J., Jacobs, A., Coutinho, T. A., Ahumada, R., Wingfield, B. D., 2002. First report of the pitch canker fungus, Fusarium circinatum, on pines in Chile. Plant Pathology 51(3), 397-397.   https://doi.org/10.1046/j.1365-3059.2002.00710.x .
  89. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y., 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany 56(417), 1975-1981.   https://doi.org/10.1093/jxb/eri195 .


Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.