From MFKP_wiki

Jump to: navigation, search


Daily synoptic conditions associated with large fire occurrence in Mediterranean France: evidence for a wind-driven fire regime

J. Ruffault, V. Moron, R. M. Trigo, T. Curt

Changes in wildfire activity in the Mediterranean area over recent decades increase the need for a better understanding of the fire–weather relationships and for the development of reliable models to improve fire danger prediction. This study analyses daily synoptic and local weather conditions associated with the occurrence of summer large fires (LFs) in Mediterranean France during recent decades (1973–2013). The links between large fire occurrence and synoptic conditions are analysed with composites of sea level pressure and winds at 925 hPa and a parsimonious synoptic weather type (WT) classification based on these variables. A cluster analysis is used to identify five homogeneous regions with similar inter-annual variations in fire activity. Our results reveal a dominant wind-driven fire regime, i.e. wind conditions are the main factor explaining why fire become large, though substantial temporal and spatial variations are observed. Thus, most LFs occur under the ‘Atlantic Ridge’ WT that combines an anticyclonic ridge over eastern Atlantic and a cyclonic anomaly stretched from the North Sea to Central/Eastern Europe and Mediterranean basin. This pattern is significantly related at local scale to fast continental dry winds. By contrast, only few LFs occur under WTs characterized by anomalously warm local-scale conditions (‘Blocking’), except under very warm and dry conditions such as during the outstanding 2003 summer. These results offer promising developments for the improvement of fire danger predictions and operational management.


International Journal of Climatology, Vol. 37, No. 1. (January 2017), pp. 524-533, https://doi.org/10.1002/joc.4680 
Key: INRMM:14460406

Keywords

               

Article-Level Metrics (Altmetrics)
Digital Object Identifier


Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:8929283950761707933

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:8929283950761707933

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.