From MFKP_wiki

Jump to: navigation, search


To model or not to model, that is no longer the question for ecologists

Rupert Seidl

Here, I argue that we should abandon the division between “field ecologists” and “modelers,” and embrace modeling and empirical research as two powerful and often complementary approaches in the toolbox of 21st century ecologists, to be deployed alone or in combination depending on the task at hand. As empirical research has the longer tradition in ecology, and modeling is the more recent addition to the methodological arsenal, I provide both practical and theoretical reasons for integrating modeling more deeply into ecosystem research. Empirical research has epistemological priority over modeling; however, that is, for models to realize their full potential, and for modelers to wield this power wisely, empirical research is of fundamental importance. Combining both methodological approaches or forming “super ties” with colleagues using different methods are promising pathways to creatively exploit the methodological possibilities resulting from increasing computing power. To improve the proficiency of the growing group of model users and ensure future innovation in model development, we need to increase the modeling literacy among ecology students. However, an improved training in modeling must not curtail education in basic ecological principles and field methods, as these skills form the foundation for building and applying models in ecology.


Ecosystems, Vol. 20, No. 2. (2017), pp. 222-228, https://doi.org/10.1007/s10021-016-0068-x 
Key: INRMM:14448173

Keywords

                 

Article-Level Metrics (Altmetrics)
Digital Object Identifier


Available versions (may include free-access full text)

DOI, SpringerLink, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:15974365993137635239

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:15974365993137635239

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.