From MFKP_wiki

Jump to: navigation, search


Climate-driven tree mortality: insights from the piñon pine die-off in the United States

Jeffrey A. Hicke, Melanie J. B. Zeppel

The global climate is changing, and a range of negative effects on plants has already been observed and will likely continue into the future. One of the most apparent consequences of climate change is widespread tree mortality (Fig. 1). Extensive tree die-offs resulting from recent climate change have been documented across a range of forest types on all forested continents (Allen et al., 2010). The exact physiological mechanisms causing this mortality are not yet well understood (e.g. McDowell, 2011), but they are likely caused by reductions in precipitation and increases in temperatures and vapor pressure deficit (VPD) that lead to enhanced soil moisture deficits and/or increased atmospheric demand of water from plants. When plant stomata close because of a lack of available soil water or high atmospheric demand, the plant cannot photosynthesize (leading to carbon (C) starvation) and/or cannot move water from roots to leaves (hydraulic limitation); either mechanism reduces growth, potentially leading directly to mortality and/or to reduced capacity to defend against insect or pathogen attack. Regardless of the mechanisms, few studies have documented relationships between climate and large-scale tree die-offs. In this issue of New Phytologist (pp. 413–421) Clifford et al. address this gap by reporting on a study of climate conditions during widespread piñon pine mortality that occurred in the early 2000s. This die-off occurred across 1.2 Mha of the southwestern United States (Breshears et al., 2005) and killed up to 350 million piñon pines (Meddens et al., 2012; Fig. 2). A combination of low precipitation, high temperatures and VPD, and bark beetles was reported to cause the mortality (Breshears et al., 2005).


New Phytologist, Vol. 200, No. 2. (October 2013), pp. 301-303, https://doi.org/10.1111/nph.12464 
Key: INRMM:14404553

Keywords

                                             

Article-Level Metrics (Altmetrics)
Digital Object Identifier


Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:14211004664470465674

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:14211004664470465674

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.