From MFKP_wiki

Jump to: navigation, search


Big names in statistics want to shake up much-maligned P value

Dalmeet Singh Chawla

One of scientists’ favourite statistics — the P value — should face tougher standards, say leading researchers.

Excerpt (Disclaimer)

Disclaimer

The following text is a small excerpt from the original publication. Within the general INRMM-MiD goal of indexing useful meta-information on INRMM related publications, this excerpt is intended as a handy summary of some potentially interesting aspects of the publication. However, the excerpt is surely incomplete and some key aspects may be missing or their correct interpretation may require the full publication to be carefully read. Please, refer to the full publication for any detail.

OK


Science is in the throes of a reproducibility crisis, and researchers, funders and publishers are increasingly worried that the scholarly literature is littered with unreliable results. Now, a group of 72 prominent researchers is targeting what they say is one cause of the problem: weak statistical standards of evidence for claiming new discoveries.
In many disciplines the significance of findings is judged by P values. They are used to test (and dismiss) a ‘null hypothesis’, which generally posits that the effect being tested for doesn’t exist. [...] Results are deemed 'statistically significant' when this value is below 0.05.
But many scientists worry that the 0.05 threshold has caused too many false positives to appear in the literature, a problem exacerbated by a practice called P hacking, in which researchers gather data without first creating a hypothesis to test, and then look for patterns in the results that can be reported as statistically significant.
So, in a provocative manuscript posted on the PsyArXiv preprint server on 22 July 1, researchers argue that P-value thresholds should be lowered to 0.005 for the social and biomedical sciences. [...]
[...]


Nature, Vol. 548, No. 7665. (26 July 2017), pp. 16-17, https://doi.org/10.1038/nature.2017.22375 
Key: INRMM:14401090

Keywords

                 

Article-Level Metrics (Altmetrics)
Digital Object Identifier


Available versions (may include free-access full text)

DOI, Pubget, PubMed (Search)

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.