From MFKP_wiki

Jump to: navigation, search

Robust modelling of the impacts of climate change on the habitat suitability of forest tree species

Daniele de Rigo, Giovanni Caudullo, Jesús San-Miguel-Ayanz, José I. Barredo

In Europe, forests play a strategic multifunctional role, serving economic, social and environmental purposes. However, their complex interaction with climate change is not yet well understood.
The JRC PESETA project series proposes a consistent multi-sectoral assessment of the impacts of climate change in Europe.
Within the PESETA II project, a robust methodology is introduced for modelling the habitat suitability of forest tree species (2071-2100 time horizon).
Abies alba (the silver fir) is selected as case study: a main European tree species often distributed in bioclimatically complex areas, spanning over various forest types and with multiple populations adapted to different conditions.
The modular modelling architecture is based on relative distance similarity (RDS) estimates which link field observations with bioclimatic patterns. Robust management of uncertainty is also discussed.

Abstract. In Europe, forests play a strategic multifunctional role, serving economic, social and environmental purposes. However, forests are among the most complex systems and their interaction with the ongoing climate change – and the multifaceted chain of potential cascading consequences for European biodiversity, environment, society and economy – is not yet well understood.
The JRC PESETA project series proposes a consistent multi-sectoral assessment of the impacts of climate change in Europe. Within the PESETA II project, a robust methodology is introduced for modelling the habitat suitability of forest tree species (2071-2100 time horizon). Abies alba (the silver fir) is selected as a case study: a main European tree species often distributed in bioclimatically complex areas, spanning over various forest types and with multiple populations adapted to different conditions.
The modular modelling architecture is based on relative distance similarity (RDS) estimates which link field observations with bioclimatic patterns, projecting their change under climate scenarios into the expected potential change of suitable habitat for tree species. Robust management of uncertainty is also examined. Both technical and interpretation core aspects are presented in an integrated overview. The semantics of the array of quantities under focus and the uneven sources of uncertainty at the continental scale are discussed (following the semantic array programming paradigm), with an effort to offer some minimal guidance on terminology, meaning and methodological limitations not only of the proposed approach, but also of the broad available literature – whose heterogeneity and partial ambiguity might potentially reverberate at the science-policy interface.

Excerpt (Disclaimer)


The following text is a small excerpt from the original publication. Within the general INRMM-MiD goal of indexing useful meta-information on INRMM related publications, this excerpt is intended as a handy summary of some potentially interesting aspects of the publication. However, the excerpt is surely incomplete and some key aspects may be missing or their correct interpretation may require the full publication to be carefully read. Please, refer to the full publication for any detail.


Robust modelling of tree species habitat suitability. How resilient are the European forests? How robust is our understanding of the potential impacts of the changing climate on the future forests in the European continent? Recalling the aforementioned inherent complexity of forest systems, and the significant share of forested areas in Europe, an articulated response may be expected.

Forests in Europe span over a variety of types and even a basic broad characterisation requires multiple, quite different ecological domains to be considered, from the subtropical domain in the Mediterranean areas to the temperate and boreal domains in the northern areas of the continent.
The literature on tree species distribution is huge. Unfortunately, terminology, meaning and methodological limitations of reported findings might be ambiguous – an ambiguity which could potentially reverberate at the science-policy interface. A confusion exists between distinct concepts such as the distribution range of a certain tree species, its frequency or probability of presence, its habitat suitability (and which kind of statistical operator is exploited to compute this suitability), the realised niche of the species versus its potential niche. Furthermore, available pan-European forest field data are collected with challenging harmonisation efforts from multiple regional (e.g. country-level) sources. Regional datasets are typically collected and organised independently, with uneven spatial density of sampling and uncertainty; and sometimes following nonhomogeneous definitions of the collected information. Therefore, semantic, modelling and data uncertainties characterise tree species distribution and suitability modelling at the European scale, requiring robust modelling strategies to mitigate their combined uncertainty.

This work mainly deals with the habitat suitability (HS) of a tree species, frequently linked to the bioclimatic conditions characterising the habitats under which the species is suitable to thrive. Here, a distinction should be made between:
the average HS – derived by considering the frequency of observed occurrences for a given bioclimatic pattern as a proxy for the corresponding fitness of the species – and
the maximum HS (MHS or survivability) – which equally considers also less frequent occurrences, so as to detect where the species can survive irrespective of whether it would be dominant or secondary within a certain bioclimatic habitat.
The first definition is the typical one implicitly considered by most HS applications, even because computing it is faster (if not the only possible option) with several available tools. The latter definition is the one on which this work focuses. Since the maximum HS is also based on available field observations (which are by definition limited to the realised niche, as altered by the anthropic influence), the estimated maximum HS of a species should not be confused with its potential niche – which may be a challengingly elusive concept from a data-driven perspective. Nevertheless, maximum HS might support the assessment of the areas whose bioclimatic conditions may allow a given species to survive (including conditions observed less frequently, thus more robust to the typically uneven sampling of the data available at regional or wider scale); and the potential spatial shift of these areas under changing climate scenarios.

HS is sometimes exploited as proxy information for crudely approximating the current distribution range (if not even the probability of presence) of the species. Extrapolating this approximation to future climate change scenarios might be tempting. However, there are several reasons why some geographic areas might be bioclimatically suitable for a species even if the species is not observed there. Among them, three may be mentioned, because of their policy relevance:
ecological competition: ▹ although the species may be bioclimatically suitable if considered in isolation, under natural conditions other taxa might prevail because of their higher fitness in taking advantage of the local bioclimatic conditions. In this case, the species may simply be unable to survive the competition with the other taxa, or it may instead be severely limited in its potential dominance, thus locally resulting as a secondary or rare species. Under these circumstances, plantations or managed forest stands (where natural competition is artificially limited) may enable the species to exploit its full habitat suitability. [...]
Dispersal limitation, ▹ distance from the borders of the current distribution: an otherwise suitable area may not yet have been colonised by the species. The changing bioclimatic patterns under climate change may amplify the impact of dispersal limitation, so as for areas expected to become suitable bioclimatically to remain not colonised by the species under focus. [...]
Anthropogenic elimination: ▹ for example, eradication of the species as a consequence of systematic anthropic interventions to favour other taxa which may be locally more convenient (e.g. from an economy perspective). [...]
These three phenomena have in common a straightforward mechanism with which the habitat suitability influences the species distribution. The maximum extent of the HS acts as a logical constraint for the actual species distribution, so that the latter is strictly included within the maximum HS. Therefore, while a future expansion of the maximum HS might not automatically imply an expanding distribution range, a future MHS contraction would likely affect the distribution range by imposing a contraction to it.

Discussing on robustness of habitat suitability modelling under climate change scenarios, another key source of uncertainty deserves to be mentioned. Projections on potential future climate scenarios predict broad areas of Europe to possibly shift towards geoclimatic patterns which are far from any currently observed pattern in Europe. This wide shift introduces an intrinsic source of modelling uncertainty due to climate-driven extrapolation. Elementary models which are based on relatively small subsets of the information on the climate signal may be able to limit the impact of the forced extrapolation, although at the price of a more simplistic description of the biophysical conditions (higher modelling uncertainty). Unfortunately, this might be a reassuring overoptimistic consequence of the low-dimensionality of the simplified climate signal considered.
The approach proposes in this study is robust even in exploiting a rich set of bioclimatic predictors (not to oversimplify the climate signal) while transparently highlighting the extent of extrapolation, which is intrinsically computed by the underpinning mathematical methods. The proposed modelling architecture to estimate maximum HS is based on the relative distance similarity (RDS) approach, which estimates a dimensionless score of how similar/dissimilar the bioclimatic patterns of a tested area are compared with the available species observations.

(March 2017), 
Key: INRMM:14314400



Article-Level Metrics (Altmetrics)
Digital Object Identifier

Available versions (may include free-access full text),, DOI,…,…, Pubget, PubMed (Search)

Versions of the publication are also available in Google Scholar.
Google Scholar code: GScluster:3183053614049184520

Works citing this publication (including grey literature)

An updated list of who cited this publication is available in Google Scholar.
Google Scholar code: GScites:3183053614049184520

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Visual summary

This section is a visual commentary of the publication. This short commentary is curated by the INRMM meta-information Database. It is not meant to be exhaustive nor self-contained. Interested readers are recommended to access the commented publication for any further detail. The authors of the publication are encouraged to provide their feedback.

Source: as rendered in
Figure 2: "Observed presences of Abies alba (coloured in A-F) with reported absences in grey. Observations are highlighted from populations in the Pyrenees (PY), Italian Apennines (AP) and Carpathians (CA). The bioclimatic space (autoecology diagrams B-F [28]) is multidimensional and rich of nonlinear patterns. An oversimplification of it might suggest false simplistic relationships. In B, the pattern of presences may resemble a Gaussian ellipsoid. However, in C-F the pattern reveals part of its real complexity (e.g. AP appears as an almost isolated fragment)." [Note: this text is excerpted or adapted from the Source URL: please, refer to the Source for any detail.]

    Source: as rendered in
    Figure 12: "Abies alba habitat suitability, density and variability for current climate and future scenarios A1B (KRE, MHH and DHE models) and E1 (ME4 model). Colour scheme derived from Harrower and Brewer [157] (see" [Note: this text is excerpted or adapted from the Source URL: please, refer to the Source for any detail.]


    1. European Commission, 2013. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - A new EU forest strategy: for forests and the forest based sector. No. COM(2013) 659 final. Communication from the Commission to the Council and the European Parliament. ,   INRMM-MiD: 12642065 .
    2. European Commission, 2013. Commission staff working document accompanying the document: Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - a new EU forest strategy: for forests and the forest-based sector. Commission Staff Working Document 2013 (SWD/2013/0342 final), 98pp. ,   INRMM-MiD: 12641572 .
    3. de Rigo, D., Bosco, C., San-Miguel-Ayanz, J., Houston Durrant, T., Barredo, J. I., Strona, G., Caudullo, G., Di Leo, M., Boca, R., 2016. Forest resources in Europe: an integrated perspective on ecosystem services, disturbances and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e015b50+. .
    4. Messier, C., Puettmann, K., Chazdon, R., Andersson, K. P., Angers, V. A., Brotons, L., Filotas, E., Tittler, R., Parrott, L., Levin, S. A., 2015. From management to stewardship: viewing forests as complex adaptive systems in an uncertain world. Conservation Letters 8 (5), 368-377. ,   INRMM-MiD: 14277816 .
    5. Reyer, C. P. O., Brouwers, N., Rammig, A., Brook, B. W., Epila, J., Grant, R. F., Holmgren, M., Langerwisch, F., Leuzinger, S., Lucht, W., Medlyn, B., Pfeifer, M., Steinkamp, J., Vanderwel, M. C., Verbeeck, H., Villela, D. M., 2015. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. Journal of Ecology 103 (1), 5-15. ,   INRMM-MiD: 14277880 .
    6. Filotas, E., Parrott, L., Burton, P. J., Chazdon, R. L., Coates, K. D., Coll, L., Haeussler, S., Martin, K., Nocentini, S., Puettmann, K. J., Putz, F. E., Simard, S. W., Messier, C., 2014. Viewing forests through the lens of complex systems science. Ecosphere 5 (1), art1+. ,   INRMM-MiD: 12936296 .
    7. Kuuluvainen, T., 2009. Forest management and biodiversity conservation based on natural ecosystem dynamics in Northern Europe: the complexity challenge. AMBIO: A Journal of the Human Environment 38 (6), 309-315. ,   INRMM-MiD: 13508633 .
    8. Milad, M., Schaich, H., Bürgi, M., Konold, W., 2011. Climate change and nature conservation in Central European forests: a review of consequences, concepts and challenges. Forest Ecology and Management 261 (4), 829-843. ,   INRMM-MiD: 8615575 .
    9. Doblas-Miranda, E., Alonso, R., Arnan, X., Bermejo, V., Brotons, L., de las Heras, J., Estiarte, M., Hódar, J. A., Llorens, P., Lloret, F., López-Serrano, F. R., Martínez-Vilalta, J., Moya, D., Peñuelas, J., Pino, J., Rodrigo, A., Roura-Pascual, N., Valladares, F., Vilà, M., Zamora, R., Retana, J., 2017. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean region: beyond drought effects. Global and Planetary Change 148, 42-54. ,   INRMM-MiD: 14277883 .
    10. European Commission, 2010. Green paper on forest protection and information in the EU: preparing forests for climate change. COM Documents 2010 (COM/2010/0066 final), 23pp. ,   INRMM-MiD: 13948074 .
    11. European Commission, 2011. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions - Our life insurance, our natural capital: an EU biodiversity strategy to 2020. No. COM(2011) 244 final. Communication from the Commission to the Council and the European Parliament. ,   INRMM-MiD: 13426212 .
    12. Alberdi Asensio, I., Baycheva-Merger, T., Bouvet, A., Bozzano, M., Caudullo, G., Cienciala, E., Corona, P., Domínguez Torres, G., Houston Durrant, T., Edwards, D., Estreguil, C., Ferreti, M., Fischer, U., Freudenschuss, A., Gasparini, P., Godinho Ferreira, P., Hansen, K., Hiederer, R., Inhaizer, H., Jellesmark Thorsen, B., Jonsson, R., Kastenholz, E., Kleinschmit von Lengefeld, A., Köhl, M., Korhonen, K., Koskela, J., Krumm, F., Lanz, A., Lasserre, B., Levet, A.-L., Li, Y., Lier, M., Mallarach Carrera, J. M., Marchetti, M., Martínez de Arano, I., Michel, A., Moffat, A., Nabuurs, G.-J., Oldenburger, J., Parviainen, J., Pettenella, D., Prokofieva, I., Quadt, V., Rametsteiner, E., Rinaldi, F., Sanders, T., San-Miguel-Ayanz, J., Schuck, A., Seidling, W., Solberg, B., Sotirov, M., Ståhl, G., Tomé, M., Toth, G., van Brusselen, J., Verkerk, H., Vítková, L., Weiss, G., Wildburguer, C., Winkel, G., Zasada, M., Zingg, A., 2015. State of Europe’s forests 2015. Ministerial Conference on the Protection of Forests in Europe (FOREST EUROPE), Madrid, Spain.,   INRMM-MiD: 13878890 .
    13. de Rigo, D., 2012. Integrated Natural Resources Modelling and Management: minimal redefinition of a known challenge for environmental modelling. Excerpt from the ‘Call for a shared research agenda toward scientific knowledge freedom’, Maieutike Research Initiative. ,   INRMM-MiD: 13840239 .
    14. Mubareka, S., Jonsson, R., Rinaldi, F., Azevedo, J. C., de Rigo, D., Sikkema, R., 2016. Forest bio-based economy in Europe. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01a52d+. .
    15. Thompson, I., Mackey, B., McNulty, S., Mosseler, A., 2009. Forest resilience, biodiversity, and climate change: a synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Vol. 43 of Technical Series. Secretariat of the Convention on Biological Diversity. ,   INRMM-MiD: 8211001 .
    16. Bastrup-Birk, A., Reker, J., Zal, N., Romao, C., Cugny-Seguin, M., Moffat, A., Herkendell, J., Abdul Malak, D., Tomé, M., Barredo, J. I., Loeffler, P., Ciccarese, L., Nabuurs, G.-J., Van Brusselen, J., Linser, S., Uhel, R., Meiner, A., Garcia-Feced, C., Aggestam, F., Barbati, A., Camia, A., Caudullo, G., Chirici, G., Ciccarese, L., Corona, P., Delbaere, B., de Rigo, D., Eggers, J., Elmauer, T., Estreguil, C., Houston Durrant, T., Jones-Walters, L., Kauhanen, E., Konijnendijk, C., Kraus, D., Larsson, T.-B., Lindner, M., Linser, S., Lombardi, F., Marchetti, M., Mavsar, R., Pulz, H., Raitio, H., Rousi, M., San-Miguel-Ayanz, J., Schelhaas, M.-J., Schuck, A., Shannon, M., Zizenis, M., 2016. European forest ecosystems - State and trends. Vol. 5/2016 of EEA Report. Publications Office of the European Union, Luxembourg. ,   INRMM-MiD: 13984463 .
    17. Gazol, A., Camarero, J. J., Gutiérrez, E., Popa, I., Andreu-Hayles, L., Motta, R., Nola, P., Ribas, M., Sangüesa-Barreda, G., Urbinati, C., Carrer, M., 2015. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography 42 (6), 1150-1162. ,   INRMM-MiD: 14266654 .
    18. Nijhuis, M., 2012. Forest fires: burn out. Nature 489 (7416), 352-354. ,   INRMM-MiD: 11282185 .
    19. Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., Worrall, J. J., Woods, A. J., 2011. Climate change and forest diseases. Plant Pathology 60 (1), 133-149. ,   INRMM-MiD: 8681053 .
    20. Barredo, J. I., Strona, G., de Rigo, D., Caudullo, G., Stancanelli, G., San-Miguel-Ayanz, J., 2015. Assessing the potential distribution of insect pests: case studies on large pine weevil (Hylobius abietis L) and horsechestnut leaf miner (Cameraria ohridella) under present and future climate conditions in European forests. EPPO Bulletin 45 (2), 273-281. ,   INRMM-MiD: 13686532 .
    21. Lloret, F., Siscart, D., Dalmases, C., 2004. Canopy recovery after drought dieback in holm-oak mediterranean forests of catalonia (NE spain). Global Change Biology 10 (12), 2092-2099. ,   INRMM-MiD: 13231210 .
    22. Döring, T. F., Vieweger, A., Pautasso, M., Vaarst, M., Finckh, M. R., Wolfe, M. S., 2015. Resilience as a universal criterion of health. Journal of the Science of Food and Agriculture 95 (3), 455-465. ,   INRMM-MiD: 13841264 .
    23. Trumbore, S., Brando, P., Hartmann, H., 2015. Forest health and global change. Science 349 (6250), 814-818. ,   INRMM-MiD: 13708350
    24. de Rigo, D., 2012. Semantic Array Programming with Mastrave - Introduction to semantic computational modelling. The Mastrave project. ,   INRMM-MiD: 11744308 .
    25. de Rigo, D., 2012. Semantic Array Programming for environmental modelling: application of the Mastrave library. In: Seppelt, R., Voinov, A. A., Lange, S., Bankamp, D. (Eds.), International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software - Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty, Sixth Biennial Meeting. pp. 1167-1176. ,   INRMM-MiD: 12227965 .
    26. de Rigo, D., 2015. Study of a collaborative repository of semantic metadata and models for regional environmental datasets’ multivariate transformations. Ph.D. thesis, Politecnico di Milano, Milano, Italy. ,   INRMM-MiD: 13769492 .
    27. Ciscar, J. C., Feyen, L., Soria, A., Lavalle, C., Raes, F., Perry, M., Nemry, F., Demirel, H., Rozsai, M., Dosio, A., Donatelli, M., Srivastava, A., Fumagalli, D., Niemeyer, S., Shrestha, S., Ciaian, P., Himics, M., Van Doorslaer, B., Barrios, S., Ibáñez, N., Forzieri, G., Rojas, R., Bianchi, A., Dowling, P., Camia, A., Libertà, G., San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Barredo, J. I., Paci, D., Pycroft, J., Saveyn, B., Van Regemorter, D., Revesz, T., Vandyck, T., Vrontisi, Z., Baranzelli, C., Vandecasteele, I., Batista e Silva, F., Ibarreta, D., 2014. Climate impacts in Europe - The JRC PESETA II project. Vol. 26586 of EUR – Scientific and Technical Research. 155 pp. ,   INRMM-MiD: 13131766 .
    28. de Rigo, D., Caudullo, G., Houston Durrant, T., San-Miguel-Ayanz, J., 2016. The European Atlas of Forest Tree Species: modelling, data and information on forest tree species. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01aa69+ .
    29. Barredo, J. I., Caudullo, G., Dosio, A., 2016. Mediterranean habitat loss under future climate conditions: assessing impacts on the Natura 2000 protected area network. Applied Geography 75, 83-92. ,   INRMM-MiD: 14270151 .
    30. Spinoni, J., Naumann, G., Vogt, J., Barbosa, P., 2016. Meteorological droughts in Europe: events and impacts - Past trends and future projections. Vol. 27748 of EUR - Scientific and Technical Research Reports. Publications Office of the European Union, Luxembourg. ISBN:978-92-79-55098-0, ,   INRMM-MiD: 14284196 .
    31. Büttner, G., Kosztra, B., Maucha, G., Pataki, R., 2012. Implementation and achievements of CLC2006. Tech. rep., European Environment Agency. ,   INRMM-MiD: 14284151 .
    32. Bossard, M., Feranec, J., Otahel, J., 2000. CORINE land cover technical guide - Addendum 2000. Tech. Rep. 40, European Environment Agency. ,   INRMM-MiD: 13106045 .
    33. Kempeneers, P., McInerney, D., Sedano, F., Gallego, J., Strobl, P., Kay, S., Korhonen, K. T., San-Miguel-Ayanz, J., 2013. Accuracy assessment of a remote sensing-based, pan-European forest cover map using multicountry national forest inventory data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (1), 54-65. ,   INRMM-MiD: 14017770 .
    34. Kempeneers, P., Sedano, F., Pekkarinen, A., Seebach, L., Strobl, P., San-Miguel-Ayanz, J., 2012. Pan-European forest maps derived from optical satellite imagery. IEEE Earthzine 5 (2), 390004+ ,   INRMM-MiD: 12070418 .
    35. Kempeneers, P., Sedano, F., Seebach, L. M., Strobl, P., San-Miguel-Ayanz, J., 2011. Data fusion of different spatial resolution remote sensing images applied to forest-type mapping. Geoscience and Remote Sensing, IEEE Transactions on 49 (12), 4977-4986. ,   INRMM-MiD: 10829008 .
    36. Bontemps, S., Defourny, P., Bogaert, E. V., Arino, O., Kalogirou, V., Perez, J. R., 2011. GLOBCOVER 2009 - Products description and validation report. Tech. rep., Université catholique de Louvain (UCL) and European Space Agency (ESA). ,   INRMM-MiD: 12770349 .
    37. Caudullo, G., Pasta, S., Giannetti, F., Barbati, A., Chirici, G., 2016. European forest classifications. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01e1b6+. .
    38. Pividori, M., Giannetti, F., Barbati, A., Chirici, G., 2016. European Forest Types: tree species matrix. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01f162+. .
    39. de Rigo, D., Houston Durrant, T., Caudullo, G., Barredo, J. I., 2016. European forests: an ecological overview. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01e873+ .
    40. Hirzel, A. H., Le Lay, G., 2008. Habitat suitability modelling and niche theory. Journal of Applied Ecology 45 (5), 1372-1381. ,   INRMM-MiD: 3181339 .
    41. Soberón, J., Nakamura, M., 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences 106 (Supplement 2), 19644-19650. doi:0.1073/pnas.0901637106 ,   INRMM-MiD: 6133193 .
    42. Sillero, N., 2011. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecological Modelling 222 (8), 1343-1346. ,   INRMM-MiD: 8960958 .
    43. Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., Kueffer, C., 2014. Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution 29 (5), 260-269. ,   INRMM-MiD: 13118636 .
    44. Svenning, J.-C., Skov, F., 2004. Limited filling of the potential range in European tree species. Ecology Letters 7 (7), 565-573. ,   INRMM-MiD: 13224390 .
    45. Svenning, J.-C., Skov, F., 2007. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecology Letters 10 (6), 453-460. ,   INRMM-MiD: 1289844 .
    46. Hannah, L., Flint, L., Syphard, A. D., Moritz, M. A., Buckley, L. B., McCullough, I. M., 2014. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends in Ecology & Evolution 29 (7), 390-397. ,   INRMM-MiD: 13660424 .
    47. Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., McCarthy, M. A., Tingley, R., Wintle, B. A., 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography 24 (3), 276-292. ,   INRMM-MiD: 13515255 .
    48. Kearney, M., 2006. Habitat, environment and niche: what are we modelling? Oikos 115 (1), 186-191. ,   INRMM-MiD: 886613 .
    49. Vidal, C., Alberdi, I., Redmond, J., Vestman, M., Lanz, A., Schadauer, K., 2016. The role of European National Forest Inventories for international forestry reporting. Annals of Forest Science 73 (4), 793-806. ,   INRMM-MiD: 14022339 .
    50. Alberdi Asensio, I., Axelsson, A.-L., Azevedo, A., Barreiro, S., Bastrup-Birk, A., Beets, P. N., Beranova, J., Bombin, R. V., Boudewyn, P., Bouriaud, O., Božić, M., Brändli, U.-B., Brandon, A., Branthomme, A., Brassel, P., Bull, G., Butterschøn, R., Čaboun, V., Čavlović, J., Cerný, M., Chirici, G., Cienciala, E., Cluzeau, C., Colin, A., Condés Ruiz, S., Daamen, W. P., de Oliveira, Y. M., DiCosmo, L., Dirkse, G. M., Dumitru, M., Fraser, B. V., Freitas, J., Fridman, J., Gabler, K., Gasparini, P., Gillis, M. D., Ginzler, C., Godinho-Ferreira, P., Gomide, G., Goto, T., Goulding, C. J., Gschwantner, T., Hamza, N., Hansen, M. H., Hennig, P., Hervé, J.-C., Hirata, Y., Hong, L., Hylen, G., Imaizumi, Y., Jansons, J., Jeong, J.-H., Johannsen, V. K., Kasperavičius, A., Kaufmann, E., Kim, S.-H., Kolozs, L., Kovac, M., Kroiher, F., Kučera, M., Kulbokas, G., Kuliešis, A., Kusar, G., Lane, P. M., Lanz, A., Latte, N., Lawrence, M., Lei, X., Licite, I., Loizou, L., Lundström, A., Lu, Y., Marin, G., Martínez deToda, S. S., Martín, F. P., Masuyama, T., Matsumoto, Y., Mattos, P., McRoberts, R. E., Meliadis, I., Michalak, R., Millán, J. M., Miyazono, H., Moravčík, M., Nilsen, J.-E., Nitu, D., Nord-Larsen, T., O’Donovan, C., Peña, G. S., Petersson, H., Piazza, M., Polley, H., Power, K., Priwitzer, T., Redmond, J., Robert, N., Rondeux, J., Rosot, M. A., Russo, G., Saket, M., Sanchez, C., Schadauer, K., Schmitz, F., Shin, M.-Y., Simoncic, P., Skovsgaard, J. P., Smith, W. B., Snorrason, A., Söderberg, U., Solontsov, O. N., Ståhl, G., Stephens, P. R., Szepesi, A., Tang, M., Thürig, E., Tomppo, E., Tomter, S. M., Tosi, V., Tsitsoni, T., Tuomainen, T., Vedriš, M., Adermann, V., Vesterdal, L., Vidal, C., Villanueva Aranguren, J. A., Wagner, M., Weiss, P., Winter, S., Zagkas, T., Zajączkowski, S., 2010. National forest inventories - Pathways for common reporting. Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E. (Eds.), Springer. ISBN: 978-90-481-3232-4, ,   INRMM-MiD: 13940462 .
    51. Ficko, A., Roessiger, J., Bončina, A., 2016. Can the use of continuous cover forestry alone maintain silver fir (Abies alba Mill.) in central European mountain forests? Forestry 89 (4), 412-421. ,   INRMM-MiD: 14288507 .
    52. Niemtur, S., Chomicz, E., Kapsa, M., 2015. Occurrence of the silver fir (Abies alba Mill.) butt rot in protected areas. Forest Research Papers 75 (4), 343-352. ,   INRMM-MiD: 13641265 .
    53. Cailleret, M., Heurich, M., Bugmann, H., 2014. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian forest National Park. Forest Ecology and Management 328, 179-192. ,   INRMM-MiD: 13762046 .
    54. Durand-Gillmann, M., Cailleret, M., Boivin, T., Nageleisen, L.-M., Davi, H., 2014. Individual vulnerability factors of Silver fir (Abies alba Mill.) to parasitism by two contrasting biotic agents: mistletoe (Viscum album L. ssp. abietis) and bark beetles (Coleoptera: Curculionidae: Scolytinae) during a decline process. Annals of Forest Science 71 (6), 659-673. ,   INRMM-MiD: 13337116 .
    55. Diaci, J., Rozenbergar, D., Anic, I., Mikac, S., Saniga, M., Kucbel, S., Visnjic, C., Ballian, D., 2011. Structural dynamics and synchronous silver fir decline in mixed old-growth mountain forests in Eastern and Southeastern Europe. Forestry 84 (5), 479-491. ,   INRMM-MiD: 13565838 .
    56. Puddu, A., Luisi, N., Capretti, P., Santini, A., 2003. Environmental factors related to damage by Heterobasidion abietinum in Abies alba forests in Southern Italy. Forest Ecology and Management 180 (1-3), 37-44. ,   INRMM-MiD: 11434617 .
    57. Mauri, A., de Rigo, D., Caudullo, G., 2016. Abies alba in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01493b+. .
    58. Caudullo, G., Tinner, W., 2016. Abies - Circum-Mediterranean firs in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e015be7+. .
    59. Birks, H. J. B., Tinner, W., 2016. Past forests of Europe. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e010c45+. .
    60. Sukumaran, J., Knowles, L. L., 2017. Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences 114 (7), 1607-1612. ,   INRMM-MiD: 14279063 .
    61. Williams, J. W., Jackson, S. T., 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5 (9), 475-482. ,   INRMM-MiD: 14281256 .
    62. Garcia, R. A., Cabeza, M., Rahbek, C., Araujo, M. B., 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344 (6183), 1247579. ,   INRMM-MiD: 13157427 .
    63. Clark, J. S., 2010. Individuals and the variation needed for high species diversity in forest trees. Science 327 (5969), 1129-1132. ,   INRMM-MiD: 6740523 .
    64. Jackson, S. T., Betancourt, J. L., Booth, R. K., Gray, S. T., 2009. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proceedings of the National Academy of Sciences 106 (Supplement 2), 19685-19692. ,   INRMM-MiD: 6133274 .
    65. Clark, J. S., Dietze, M., Chakraborty, S., Agarwal, P. K., Ibanez, I., LaDeau, S., Wolosin, M., 2007. Resolving the biodiversity paradox. Ecology Letters 10 (8), 647-659. ,   INRMM-MiD: 1420742 .
    66. Alley, T. R., 1982. Competition theory, evolution, and the concept of an ecological niche. Acta Biotheoretica 31 (3), 165-179. ,   INRMM-MiD: 14281339 .
    67. Ungar, J., Peters-Anders, J., Loibl, W., 2011. Climate twins - An attempt to quantify climatological similarities. IFIP Advances in Information and Communication Technology 359, 428-436. ,   INRMM-MiD: 14309428
    68. Moran, E. V., Hartig, F., Bell, D. M., 2016. Intraspecific trait variation across scales: implications for understanding global change responses. Global Change Biology 22 (1), 137-150. ,   INRMM-MiD: 14307987 .
    69. Laughlin, D. C., Messier, J., 2015. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution 30 (8), 487-496. ,   INRMM-MiD: 14310140 .
    70. Kremer, A., Potts, B. M., Delzon, S., 2014. Genetic divergence in forest trees: understanding the consequences of climate change. Functional Ecology 28 (1), 22-36. ,   INRMM-MiD: 14307994 .
    71. Franks, S. J., Weber, J. J., Aitken, S. N., 2014. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary Applications 7 (1), 123-139. ,   INRMM-MiD: 14310132 .
    72. Valladares, F., Gianoli, E., Gómez, J. M., 2007. Ecological limits to plant phenotypic plasticity. New Phytologist 176 (4), 749-763. ,   INRMM-MiD: 14310139 .
    73. Brang, P., Breznikar, A., Hanewinkel, M., Jandl, R., Maier, B., 2013. Managing alpine forests in a changing climate. In: Cerbu, G. (Ed.), Management Strategies to Adapt Alpine Space Forests to Climate Change Risks. InTech, Ch. 20, pp. 369-383. ,   INRMM-MiD: 14282988 .
    74. Linares, J. C., Camarero, J. J., 2012. Silver fir defoliation likelihood is related to negative growth trends and high warming sensitivity at their southernmost distribution limit. ISRN Forestry 2012, 1-8. ,   INRMM-MiD: 14307410 .
    75. Florentina, I., Io, B., 2011. The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. In: Khallaf, M. (Ed.), The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources. InTech, Ch. 12, pp. 241-280. ,   INRMM-MiD: 14283017 .
    76. Tinner, W., Colombaroli, D., Heiri, O., Henne, P. D., Steinacher, M., Untenecker, J., Vescovi, E., Allen, J. R. M., Carraro, G., Conedera, M., Joos, F., Lotter, A. F., Luterbacher, J., Samartin, S., Valsecchi, V., 2013. The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecological Monographs 83 (4), 419-439. ,   INRMM-MiD: 13300008 .
    77. Schwörer, C., Colombaroli, D., Kaltenrieder, P., Rey, F., Tinner, W., 2015. Early human impact (5000-3000 BC) affects mountain forest dynamics in the Alps. Journal of Ecology 103 (2), 281-295. ,   INRMM-MiD: 13519274 .
    78. Mosca, E., González-Martínez, S. C., Neale, D. B., 2014. Environmental versus geographical determinants of genetic structure in two subalpine conifers. New Phytologist 201 (1), 180-192. ,   INRMM-MiD: 14276570 .
    79. Roschanski, A. M., Csilléry, K., Liepelt, S., Oddou-Muratorio, S., Ziegenhagen, B., Huard, F., Ullrich, K. K., Postolache, D., Vendramin, G. G., Fady, B., 2016. Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps. Molecular Ecology 25 (3), 776-794. ,   INRMM-MiD: 14276603 .
    80. Feurdean, A., Willis, K. J., 2008. Long-term variability of Abies alba in NW Romania: implications for its conservation management. Diversity and Distributions 14 (6), 1004-1017. ,   INRMM-MiD: 3428974 .
    81. Caudullo, G., Welk, E., San-Miguel-Ayanz, J., 2017. Chorological maps for the main European woody species. Data in Brief (submitted). Dataset .
    82. Henne, P. D., Elkin, C., Franke, J., Colombaroli, D., Calò, C., La Mantia, T., Pasta, S., Conedera, M., Dermody, O., Tinner, W., 2015. Reviving extinct Mediterranean forest communities may improve ecosystem potential in a warmer future. Frontiers in Ecology and the Environment 13 (7), 356-362. ,   INRMM-MiD: 13772140 .
    83. Ruosch, M., Spahni, R., Joos, F., Henne, P. D., van der Knaap, P. W. O., Tinner, W., 2015. Past and future evolution of Abies alba forests in Europe - Comparison of a dynamic vegetation model with palaeo data and observations. Global Change Biology 22, 727-740. ,   INRMM-MiD: 13762037 .
    84. Maiorano, L., Cheddadi, R., Zimmermann, N. E., Pellissier, L., Petitpierre, B., Pottier, J., Laborde, H., Hurdu, B. I., Pearman, P. B., Psomas, A., Singarayer, J. S., Broennimann, O., Vittoz, P., Dubuis, A., Edwards, M. E., Binney, H. A., Guisan, A., 2013. Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography 22 (3), 302-317. ,   INRMM-MiD: 11836160 .
    85. Bugmann, H., Brang, P., Elkin, C., Henne, P., Jakoby, O., Lévesque, M., Lischke, H., Psomas, A., Rigling, A., Wermelinger, B., Zimmermann, N. E., 2014. Climate change impacts on tree species, forest properties, and ecosystem services. In: Appenzeller, C., Fischer, E. M., Fuhrer, J., Grosjean, M., Hohmann, R., Joos, F., Raible, C. C., Ritz, C., Raible, C. C., Strassmann, K. M. (Eds.), Toward Quantitative Scenarios of Climate Change Impacts in Switzerland. OCCR, FOEN, MeteoSwiss, C2SM, Agroscope and ProClim, Bern, Switzerland, pp. 79-88. ,   INRMM-MiD: 13590963 .
    86. Cheddadi, R., Birks, H. J. B., Tarroso, P., Liepelt, S., Gömöry, D., Dullinger, S., Meier, E. S., Hülber, K., Maiorano, L., Laborde, H., 2014. Revisiting tree-migration rates: Abies alba (Mill.), a case study. Vegetation History and Archaeobotany 23 (2), 113-122. ,   INRMM-MiD: 13403099 .
    87. Casalegno, S., Amatulli, G., Camia, A., Nelson, A., Pekkarinen, A., 2010. Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. Forest Ecology and Management 259 (4), 750-761. ,   INRMM-MiD: 6196394 .
    88. Casalegno, S., Amatulli, G., Bastrup-Birk, A., Houston Durrant, T., Pekkarinen, A., 2011. Modelling and mapping the suitability of European forest formations at 1-km resolution. European Journal of Forest Research 130 (6), 971-981. ,   INRMM-MiD: 8850350 .
    89. Hofierka, J., Suri, M., Huld, T., 2007. GRASS GIS manual: r.sun. In: GRASS Development Team, 2013. GRASS GIS 6.4.3svn Reference Manual. Open Source Geospatial Foundation. ,   INRMM-MiD: 12394257 .
    90. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. T., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259 (4), 660-684. ,   INRMM-MiD: 6004190 .
    91. Allen, C. D., 2009. Climate-induced forest dieback: an escalating global phenomenon? Unasylva 60 (231-232), 43-49. ,   INRMM-MiD: 14256335 .
    92. Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., Bondeau, A., Bugmann, H., Carter, T. R., Gracia, C. A., de la Vega-Leinert, A. C., Erhard, M., Ewert, F., Glendining, M., House, J. I., Kankaanpää, S., Klein, R. J. T., Lavorel, S., Lindner, M., Metzger, M. J., Meyer, J., Mitchell, T. D., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., Zierl, B., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310 (5752), 1333-1337. ,   INRMM-MiD: 460429 .
    93. Skov, F., Svenning, J.-C., 2004. Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27 (3), 366-380. ,   INRMM-MiD: 990152 .
    94. Karjalainen, T., Pussinen, A., Liski, J., Nabuurs, G.-J., Erhard, M., Eggers, T., Sonntag, M., Mohren, G. M. J., Jun. 2002. An approach towards an estimate of the impact of forest management and climate change on the European forest sector carbon budget: Germany as a case study. Forest Ecology and Management 162 (1), 87-103. ,   INRMM-MiD: 14258099 .
    95. Kramer, K., Leinonen, I., Loustau, D., 2000. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. International Journal of Biometeorology 44 (2), 67-75. ,   INRMM-MiD: 14257892 .
    96. Pearson, R. G., Dawson, T. P., Sep. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12 (5), 361-371. ,   INRMM-MiD: 671618 .
    97. Bonan, G. B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320 (5882), 1444-1449. ,   INRMM-MiD: 2891450 .
    98. Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., Curtis-McLane, S., 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1 (1), 95-111. ,   INRMM-MiD: 3969769 .
    99. Araujo, M. B., Cabeza, M., Thuiller, W., Hannah, L., Williams, P. H., 2004. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10 (9), 1618-1626. ,   INRMM-MiD: 201812 .
    100. Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., Schellnhuber, H. J., 2008. Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences 105 (6), 1786-1793. ,   INRMM-MiD: 2392774 .
    101. Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T. P., Lees, D. C., 2006. Model-based uncertainty in species range prediction. Journal of Biogeography 33 (10), 1704-1711. ,   INRMM-MiD: 591817 .
    102. Linares, J. C., 2011. Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: the roles of long-term climatic change and glacial refugia. Journal of Biogeography 38 (4), 619-630. ,   INRMM-MiD: 9038463 .
    103. Liepelt, S., Mayland-Quellhorst, E., Lahme, M., Ziegenhagen, B., 2010. Contrasting geographical patterns of ancient and modern genetic lineages in Mediterranean Abies species. Plant Systematics and Evolution 284 (3-4), 141-151. goDOI10.1007/s00606-009-0247-8,   INRMM-MiD: 6434267 .
    104. Liepelt, S., Cheddadi, R., de Beaulieu, J.-L., Fady, B., Gömöry, D., Hussendörfer, E., Konnert, M., Litt, T., Longauer, R., Terhürne-Berson, R., Ziegenhagen, B., 2009. Postglacial range expansion and its genetic imprints in Abies alba (Mill.) - A synthesis from palaeobotanic and genetic data. Review of Palaeobotany and Palynology 153 (1-2), 139-149. ,   INRMM-MiD: 10128683 .
    105. Konnert, M., Bergmann, F., 1995. The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Systematics and Evolution 196 (1), 19-30. ,   INRMM-MiD: 11379049 .
    106. de Rigo, D., Barredo, J. I., Busetto, L., Caudullo, G., San-Miguel-Ayanz, J., 2013. Continental-scale living forest biomass and carbon stock: a robust fuzzy ensemble of IPCC Tier 1 maps for Europe. IFIP Advances in Information and Communication Technology 413, 271-284. ,   INRMM-MiD: 12541209 .
    107. Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Griibler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., Dadi, Z., 2000. Special report on emissions scenarios. Nakicenovic, N., Swart, R. (Eds.). Intergovernmental Panel on Climate Change. ,   INRMM-MiD: 14174473 .
    108. van der Linden, P., Mitchell, J. F. B., 2009. ENSEMBLES: Climate Change and its Impacts - Summary of research and results from the ENSEMBLES project. Tech. rep., Met Office Hadley Centre, Exeter, United Kingdom. ,   INRMM-MiD: 14257308 .
    109. San-Miguel-Ayanz, J., 2016. The European Union Forest Strategy and the Forest Information System for Europe. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e012228+ .
    110. Stallman, R. M., 2009. Viewpoint: why ”open source” misses the point of free software. Communications of the ACM 52 (6), 31-33. , ,   INRMM-MiD: 9506694 .
    111. Peng, R. D., 2011. Reproducible research in computational science. Science 334 (6060), 1226-1227. ,   INRMM-MiD: 9506694 .
    112. European Commission, 2008. I-Ispra: framework contract for the provision of forest data and services in support to the European Forest Data Centre. Framework service contract number 384104.   INRMM-MiD: 14249043 .
    113. de Rigo, D., Caudullo, G., Busetto, L., San-Miguel-Ayanz, J., 2014. Supporting EFSA assessment of the EU environmental suitability for exotic forestry pests: final report. EFSA Supporting Publications 11 (3), EN-434+. ,   INRMM-MiD: 13114000 .
    114. Iverson, L. R., Prasad, A. M., Matthews, S. N., Peters, M., 2008. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management 254 (3), 390-406. ,   INRMM-MiD: 14258049 .
    115. de Rigo, D., 2011. Mastrave. In: Free Software Directory. Free Software Foundation, Boston, USA, pp. 8008+. ,   INRMM-MiD: 12643637 .
    116. de Rigo, D., Bosco, C., 2011. Architecture of a pan-European framework for integrated soil water erosion assessment. IFIP Advances in Information and Communication Technology 359, 310-318. ,   INRMM-MiD: 10793234 .
    117. Eaton, J. W., Bateman, D., Hauberg, S., 2008. GNU Octave manual version 3: a high-level interactive language for numerical computations. Network Theory. ISBN:978-0954612061,,   INRMM-MiD: 9115371 .
    118. Ramey, C., Fox, B., 2006. Bash reference manual: reference documentation for Bash edition 3.2, for Bash version 3.2. Network Theory Limited. ISBN:0-9541617-7-7,,   INRMM-MiD: 11232991 .
    119. Free Software Foundation, Abernathy, W., Anderson, G., Anhalt, C., Bai, L., Baptista, V., Barakat, M., Batini, E., Bavier, E., Becher, J., Becher, V., Biberg Kristensen, L., Boyle, T., Brown, P., Catkan, B., Charzat, S., Cherlin, E., Compall, S., Davies, P., de Rigo, D., Devarajan, D., Dorrington, M., Fernández Piñas, D., Fortin, P., Gauland, M., Gillmor, D. K., Goh, T., Golin, R., Haichao, X., Hall, D., Hyde, A., Innoccenti, B., Jonsson, A., Kibbe, D., Kochenderfer, V., Krampis, N., Lee, M., Lockwood-Childs, S., Lucifredi, F., Magallon, M., Martin, A., McConnaughey, W., McNeely, M., Mengel, M., Merriam, W., Nair, S., Newell, M., Oliver, J., Oram, A., Oranen, J., Pawson, D., Prastowo, T., Ravikumar, S., Revilak, S., Schaumburg, S., Skwarecki, B., Sullivan, J., Tange, O., Tenney, K., Thahir, S., Walck, S., Weissmann, B., Wells, S., Williams, C., Woodacre, B., Woof, J., et al., 2010. Introduction to the Command Line. FLOSS Manuals. ,   INRMM-MiD: 13644772 .
    120. Ramey, C., Fox, B., 2016. Bash reference manual: reference documentation for Bash edition 4.4, for Bash version 4.4. Free Software Foundation, Boston, United States. ,   INRMM-MiD: 14261705 .
    121. Warmerdam, F., 2008. The Geospatial Data Abstraction Library. In: Hall, G. B., Leahy, M. G. (Eds.), Open Source Approaches in Spatial Data Handling. Vol. 2 of Advances in Geographic Information Science. Springer Berlin Heidelberg, pp. 87-104. ,   INRMM-MiD: 11894781 .
    122. van Rossum, G., Drake, F. L., 2011. The Python language reference manual: for Python version 3.2. Network theory Ltd.,   INRMM-MiD: 11232719 .
    123. Berry, P. M., Dawson, T. P., Harrison, P. A., Pearson, R. G., 2002. Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global Ecology and Biogeography 11 (6), 453-462. ,   INRMM-MiD: 14256352 .
    124. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Townsend Peterson, A., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., Zimmermann, N. E., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29 (2), 129-151. ,   INRMM-MiD: 585800 .
    125. Thuiller, W., Lafourcade, B., Engler, R., Araújo, M. B., Jun. 2009. BIOMOD - A platform for ensemble forecasting of species distributions. Ecography 32 (3), 369-373. ,   INRMM-MiD: 5113666 .
    126. Houston Durrant, T., San-Miguel-Ayanz, J., Schulte, E., Suarez Meyer, A., 2011. Evaluation of BioSoil demonstration project: forest biodiversity - Analysis of biodiversity module. Vol. 24777 of EUR - Scientific and Technical Research. Publications Office of the European Union. ,   INRMM-MiD: 13480322 .
    127. Houston Durrant, T., Hiederer, R., 2009. Applying quality assurance procedures to environmental monitoring data: a case study. Journal of Environmental Monitoring 11 (4), 774-781. ,   INRMM-MiD: 4388178 .
    128. Hiederer, R., Houston Durrant, T., Granke, O., Lambotte, M., Lorenz, M., Mignon, B., Mues, V., 2007. Forest focus monitoring database system - Validation methodology. Vol. EUR 23020 EN of EUR – Scientific and Technical Research. Office for Official Publications of the European Communities. ,   INRMM-MiD: 13503231 .
    129. Jarvis, A., Reuter, H. I., Nelson, A., Guevara, E., 2008. Hole-filled SRTM for the globe Version 4. In: CGIAR Consortium for Spatial Information (CGIAR-CSI). CGIAR, Washington, United States. ,   INRMM-MiD: 14258097 .
    130. Reuter, H. I., Nelson, A., Jarvis, A., 2007. An evaluation of void-filling interpolation methods for SRTM data. International Journal of Geographical Information Science 21 (9), 983-1008. ,   INRMM-MiD: 2078351 .
    131. Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics 45 (2), RG2004+. ,   INRMM-MiD: 1554680 .
    132. Neteler, M., Bowman, M. H., Landa, M., Metz, M., 2012. GRASS GIS: a multi-purpose open source GIS. Environmental Modelling & Software 31, 124-130. ,   INRMM-MiD: 10156721 .
    133. European Soil Bureau, European Commission, 2004. European soil database - Distribution version v2.0. Van Liedekerke, M., Jones, J.A., Daroussin, J., Jones, A., Panagos, P., Montanarella, L. (Eds.). Publications Office of the European Union, Luxembourg. ISBN:92-894-1947-4,   INRMM-MiD: 14258119 .
    134. Augusto, L., Ranger, J., Binkley, D., Rothe, A., 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science 59 (3), 233-253. ,   INRMM-MiD: 13565711 .
    135. Augusto, L., Dupouey, J.-L., Ranger, J., 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Forest Science 60 (8), 823-831. ,   INRMM-MiD: 12607336 .
    136. Wang, Z., Göttlein, A., Bartonek, G., 2001. Effects of growing roots of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) on rhizosphere soil solution chemistry. Z. Pflanzenernähr. Bodenk. 164 (1), 35-41.<35::aid-jpln35>;2-m ,   INRMM-MiD: 11419175 .
    137. Stoffel, M., Wilford, D. J., 2012. Hydrogeomorphic processes and vegetation: disturbance, process histories, dependencies and interactions. Earth Surface Processes and Landforms 37 (1), 9-22. ,   INRMM-MiD: 13363696 .
    138. Cools, N., Vesterdal, L., De Vos, B., Vanguelova, E., Hansen, K., 2014. Tree species is the major factor explaining C:N ratios in European forest soils. Forest Ecology and Management 311, 3-16. ,   INRMM-MiD: 13095631 .
    139. Liski, J., Perruchoud, D., Karjalainen, T., 2002. Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management 169 (1-2), 159-175. ,   INRMM-MiD: 13363486 .
    140. Baritz, R., Seufert, G., Montanarella, L., Van Ranst, E., 2010. Carbon concentrations and stocks in forest soils of Europe. Forest Ecology and Management 260 (3), 262-277. ,   INRMM-MiD: 7329565 .
    141. Sakals, M. E., Innes, J. L., Wilford, D. J., Sidle, R. C., Grant, G. E., 2006. The role of forests in reducing hydrogeomorphic hazards. Forest Snow and Landscape Research 80 (1), 11-22. ,   INRMM-MiD: 13908936 .
    142. Klausmeyer, K. R., Shaw, M. R., 2009. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLOS ONE 4 (7), e6392+. ,   INRMM-MiD: 14257874 .
    143. Benito Garzón, M., Sánchez de Dios, R., Sainz Ollero, H., 2008. Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science 11 (2), 169-178. ,   INRMM-MiD: 12607331 .
    144. Tabor, K., Williams, J. W., 2010. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecological Applications 20 (2), 554-565. ,   INRMM-MiD: 11232807 .
    145. Ramirez-Villegas, J., Jarvis, A., 2010. Downscaling global circulation model outputs: the delta method. Tech. Rep. Decision and Policy Analysis Working Paper N. 1, CIAT - International Center for Tropical Agriculture. ,   INRMM-MiD: 12801153 .
    146. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25 (15), 1965-1978. ,   INRMM-MiD: 1113062 .
    147. Dosio, A., Paruolo, P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. Journal of Geophysical Research 116 (D16). ,   INRMM-MiD: 14151660 .
    148. Franke, R., 1982. Smooth interpolation of scattered data by local thin plate splines. Computers & Mathematics with Applications 8 (4), 273-281. ,   INRMM-MiD: 14257886 .
    149. Mitáš, L., Mitášová, H., 1988. General variational approach to the interpolation problem. Computers & Mathematics with Applications 16 (12), 983-992. ,   INRMM-MiD: 14257889 .
    150. Royle, J. A., Nichols, J. D., 2003. Estimating abundance from repeated presence-absence data or point counts. Ecology 84 (3), 777-790.[0777:eafrpa];2 ,   INRMM-MiD: 9452867 .
    151. Mackenzie, D. I., 2006. Modeling the probability of resource use: the effect of, and dealing with, detecting a species imperfectly. Journal of Wildlife Management 70 (2), 367-374.[367:mtporu];2 ,   INRMM-MiD: 14258110 .
    152. Mulder Osenga, E., 2014. Predicting future forest ranges using array-based geospatial semantic modelling. IEEE Earthzine 7 (2), 827545+. , ,   INRMM-MiD: 13385092 .
    153. de Rigo, D., Castelletti, A., Rizzoli, A. E., Soncini-Sessa, R., Weber, E., 2005. A selective improvement technique for fastening neuro-dynamic programming in water resources network management. In: Proceedings of the 16th IFAC World Congress. ,   INRMM-MiD: 10793225 .
    154. de Rigo, D., Rizzoli, A. E., Soncini-Sessa, R., Weber, E., Zenesi, P., 2001. Neuro-dynamic programming for the efficient management of reservoir networks. In: Proceedings of MODSIM 2001, International Congress on Modelling and Simulation. Vol. 4. Modelling and Simulation Society of Australia and New Zealand, pp. 1949-1954. ,   INRMM-MiD: 9507040 .
    155. Yin, L., Yang, R., Gabbouj, M., Neuvo, Y., 1996. Weighted median filters: a tutorial. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 43 (3), 157-192. ,   INRMM-MiD: 1401591 .
    156. de Rigo, D., 2012. Multi-dimensional weighted median: the module ”wmedian” of the Mastrave modelling library. In: Semantic Array Programming with Mastrave - Introduction to Semantic Computational Modelling. Mastrave project. ,   INRMM-MiD: 14257128 .
    157. Harrower, M., Brewer, C. A., 2003. an online tool for selecting colour schemes for maps. The Cartographic Journal 40 (1), 27-37. ,   INRMM-MiD: 9026683 .
    158. Chater, A. O., 1993. Abies Miller. In: Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., Valentine, D. H., Walters, S. M., Webb, D. A. (Eds.), Flora Europaea, Volume 1: Psilotaceae to Platanaceae, 2nd Edition. Cambridge University Press, pp. 37-38.   INRMM-MiD: 14251657 .
    159. von Raab-Straube, E., 2014. Abies alba Mill. In: Euro+Med Plantbase - the information resource for Euro-Mediterranean plant diversity. Botanic Garden and Botanical Museum Berlin-Dahlem. ,   INRMM-MiD: 14266522 .
    160. Bryan Davis, M., 1981. Quaternary history and the stability of forest communities. In: West, D. C., Shugart, H. H., Botkin, D. B. (Eds.), Forest Succession. Springer Advanced Texts in Life Sciences. Springer New York, pp. 132-153. ,   INRMM-MiD: 14257118 .

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.