From MFKP_wiki

Jump to: navigation, search


Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks

Sean Bell, C. Lawrence Zitnick, Kavita Bala, Ross Girshick

It is well known that contextual and multi-scale representations are important for accurate visual recognition. In this paper we present the Inside-Outside Net (ION), an object detector that exploits information both inside and outside the region of interest. Contextual information outside the region of interest is integrated using spatial recurrent neural networks. Inside, we use skip pooling to extract information at multiple scales and levels of abstraction. Through extensive experiments we evaluate the design space and provide readers with an overview of what tricks of the trade are important. ION improves state-of-the-art on PASCAL VOC 2012 object detection from 73.9% to 76.4% mAP. On the new and more challenging MS COCO dataset, we improve state-of-art-the from 19.7% to 33.1% mAP. In the 2015 MS COCO Detection Challenge, our ION model won the Best Student Entry and finished 3rd place overall. As intuition suggests, our detection results provide strong evidence that context and multi-scale representations improve small object detection.


In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) (2016), pp. 2874-2883, https://doi.org/10.1109/CVPR.2016.314 
Key: INRMM:13887727

Keywords

           

Article-Level Metrics (Altmetrics)
Digital Object Identifier

Article-Level Metrics (Altmetrics)
arXiv code


Available versions (may include free-access full text)

DOI, http://openaccess.thecvf.com/content_cvpr…, http://openaccess.thecvf.com/content_cvpr…, arXiv (abstract), arXiv (PDF), NASA ADS, Pubget, PubMed (Search)

Further search for available versions

Search in ResearchGate (or try with a fuzzier search in ResearchGate)
Search in Mendeley (or try with a fuzzier search in Mendeley)

Publication metadata

Bibtex, RIS, RSS/XML feed, Json, Dublin Core
Metadata search: CrossRef DOI, DataCite DOI

Digital preservation of this INRMM-MiD record

Internet Archive

Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links.
Search within the whole INRMM meta-information database:
Search only within the INRMM-MiD publication records:
Full-text and abstracts of the publications indexed by the INRMM meta-information database are copyrighted by the respective publishers/authors. They are subject to all applicable copyright protection. The conditions of use of each indexed publication is defined by its copyright owner. Please, be aware that the indexed meta-information entirely relies on voluntary work and constitutes a quite incomplete and not homogeneous work-in-progress.
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2011). This new integrated interface is operational since 2014.